
Introduction and de�nitions
Model Theory

for abelian C∗-algebra

Model Theory for abelian C ∗-algebras

Alessandro Vignati
York University, Toronto

Torino
December 22nd 2014

(Joint with Christopher J. Eagle, University of Toronto)

A. Vignati, YorkU, Toronto Saturation



Introduction and de�nitions
Model Theory

for abelian C∗-algebra

Background - C∗-algebras

Model Theory and saturation

The commutative 0-dimensional case

A. Vignati, YorkU, Toronto Saturation



Introduction and de�nitions
Model Theory

for abelian C∗-algebra

De�nition

A C∗-algebra is a complex Banach space A with a multiplication · and an
involution ∗ satisfying:

‖xy‖ ≤ ‖x‖ ‖y‖,
(x + y)∗ = x∗ + y∗ and (xy)∗ = y∗x∗,

(λx)∗ = λx∗

‖x‖ = ‖x∗‖ and (C∗-equality) ‖xx∗‖ = ‖x‖2.

A. Vignati, YorkU, Toronto Saturation
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Example

Mn(C), for every n,

B(H), the algebra of bounded linear operators T : H → H, where H
is a complex Hilbert space (e.g. `2(N)),
∗-closed Banach subalgebras of B(H).

C (X ) = {f : X → C | f is continuous} for X compact Hausdor�,
with pointwise operations.

sums, tensor products and products of the above.

Theorem (Gelfand-Naimark-Segal)

Every unital commutative C∗-algebra is isomorphic to C (X ), for
some X compact Hausdor�.

Every C∗-algebra A is isomorphic to a subalgebra of B(H), for some
H.If A is separable, H can be chosen to be separable too.
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De�nition

Let A a C∗-algebra and U an ultra�lter on N
`∞(A) = {(an) | an ∈ A, supn ‖an‖ <∞}
cU (A) = {(an) | an ∈ A, limn→U ‖an‖ = 0} is an ideal in `∞(A).

The ultrapower is de�ned as AU = `∞(A)/cU (A).

The ultrapower of a C∗-algebra is again a C∗-algebra.

A. Vignati, YorkU, Toronto Saturation
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In the usual (discrete) setting for model theory ultrapowers are
closely tied to �rst-order logic.

Unfortunately �rst-order logic as we know it is not the right logic for
studying C∗-algebra

Instead we will use a logic with truth values in R, developed for the
study of metric structures (Ben Yaacov - Berenstein - Henson -
Usvyatsov)in a version adapted for C∗-algebras (Farah - Hart -
Sherman).

It was proved that this is the right logic (there is a Lindstrom-like
Theorem) if one wants basic model theory (Lowenheim-Skolem ↑
and ↓, compactness, unions of elementary chains, etc).

A. Vignati, YorkU, Toronto Saturation
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Atomic formulas are of the form ‖P(x)‖ where P(x) is a
∗-polynomial.

If φ1(x), . . . , φn(x) are formulas, and f : Rn → R is uniformly
continuous, then f (φ1(x), . . . , φn(x)) is a formula.

If φ is a formula and R ∈ R+, sup‖x‖≤R φ(x) and inf‖x‖≤R φ(x) are
formulas.

Note that there is no negation, nor implication.

A. Vignati, YorkU, Toronto Saturation
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If φ(x1, . . . , xn) is a formula, A is a C∗-algebra and a1, . . . , an we can
obtain the value φA(a1, . . . , an) ∈ R by substituting ai for xi and
using operations and norm of A.

A formula without free-variables is a sentence. Given a sentence σ
we write A � σ to mean σA = 0.

A. Vignati, YorkU, Toronto Saturation
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Th(A) the set of sentences that are "true" in A.

Th(A) = {σ | A � σ} = {σ | σA = 0}

A and B are elementary equivalent (A ≡ B) if Th(A) = Th(B).

Theorem (Keisler-Shelah)

A ≡ AU for every ultra�lter U
A ≡ B if and only if there is an ultra�lter U such that AU ∼= BU . If
the Continuum Hypothesis holds U is an ultra�lter on N, otherwise a
larger index set may be needed.

A. Vignati, YorkU, Toronto Saturation
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Example

( sup
‖x‖≤1

sup
‖y‖≤1

‖xy − yx‖)A = 0

if and only if A is abelian.

( inf
‖x‖=1

∥∥x2∥∥)A = 0

if and only if A is not abelian.

We focus on abelian C∗-algebras. Then A ∼= C (X ). The following
topological properties can be detected by the theory:

being connected or disconnected

having Lebesgue covering dimension =, ≤ or ≥ than n

being indecomposable, hereditary indecomposable

..and much more!

A. Vignati, YorkU, Toronto Saturation
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We focus on the 0-dimensional case. Every X is compact Hausdor�. A
topological space is 0-dimensional if every open set contains a nontrivial
clopen (closed+open). In this case the set of clopens CL(X ) is a Boolean
algebra. It makes sense to talk about CL(X ) ≡ CL(Y ) as Boolean
algebras, in classical discrete model theory

Theorem (Eagle-V.)

CL(X ) ≡ CL(Y ) if and only if C (X ) ≡ C (Y ).

Theorem (??)

There are only ℵ0-many theories of Boolean algebras.

Corollary

There are ℵ0-many theories of abelian C∗-algebras of dimension 0.
Moreover

C (α + 1) ≡ C (β + 1) ≡ C (βN) for every ordinal α, β.

C (2N) ≡ C (βN \ N)

A. Vignati, YorkU, Toronto Saturation
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algebras, in classical discrete model theory

Theorem (Eagle-V.)

CL(X ) ≡ CL(Y ) if and only if C (X ) ≡ C (Y ).

Theorem (??)

There are only ℵ0-many theories of Boolean algebras.

Corollary

There are ℵ0-many theories of abelian C∗-algebras of dimension 0.
Moreover

C (α + 1) ≡ C (β + 1) ≡ C (βN) for every ordinal α, β.

C (2N) ≡ C (βN \ N)
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Introduction and de�nitions
Model Theory

for abelian C∗-algebra

Unfortunately

Theorem

For every n > 0, there are continuum many theories for
n-dimensional abelian C∗-algebras.

If n > 0, there is not a class of objects (groups, rings, lattices, etc)
that can be associated "canonically" to abelian C∗-algebra
preserving elementary equivalency.

(..even though there is some work in progress.)
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Introduction and de�nitions
Model Theory

for abelian C∗-algebra

De�nition

Let A be a C∗-algebra. Let Φ be a set of formulas with parameters
from A. A Φ-type is a set of conditions of the form φ(x) ∈ K where
φ ∈ Φ and K ⊆ R is compact.

A Φ-type Σ is consistent if for every ε > 0 and a �nite ∆ ⊆ Σ there
is a ∈ A such that d(φ(a),K ) < ε for every φ ∈ ∆.

A Φ-type is realized if there is a ∈ A such that φ(a) ∈ K for every
φ ∈ Σ,

A is said countably Φ-saturated if every consistent countable
Φ-type is realized.

Three degrees of saturation are important: 1-degree (Φ is the set of
formulas of the form ‖P‖, with P a ∗-polynomial of degree one),
quanti�er free (Φ is the set of quanti�er free formulas), and full.
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for abelian C∗-algebra

If A is a C∗-algebra, AU is full saturated for every nonprincipal U .
If A is separable, `∞(A)/c0(A) is full saturated [Farah-Shelah]

If X is locally compact metrizable noncompact, C (βX \ X ) is
1-degree saturated [Farah-Hart]

Finite dimensional C∗-algebras are full saturated, since they are
isomorphic to their own ultrapower.

..many more examples and properties are known [Farah-Hart,
Farah-Shelah, Voiculescu, Eagle-V., others]

The following seems silly at a �rst look, but a solution has yet to be
found:

Question

Is there a C∗-algebra that is quanti�er free saturated but not full
saturated?
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Let X be 0-dimensional. CL(X ) is a Boolean algebra, and it is said to be
countably saturated if it is saturated in the usual discrete model
theoretical sense. First some topological properties associated to X :

Theorem (Eagle - V.)

If C (X ) is countably 1-degree saturated:

X is not metrizable

X does not have the countable chain condition

every two disjoint open σ-compact have disjoint closures (X is an
F -space)

No open σ-compact has open closure. (X is not Rickart)
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and then a Theorem connecting the notions of saturation:

Theorem (Eagle - V.)

C (X ) is full saturated⇒ CL(X ) is full saturated

and

CL(X ) is saturated ⇒ C (X ) is quanti�er free saturated.

(The last implication should be strengthened)
(For the proof: we assume the Continuum Hypothesis in the �rst place,
and then we get rid of it via forcing and absoluteness)
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Theorem (Eagle - V.)

If, in addiction, X does not have isolated point the following are
equivalent

C (X ) is 1-degree saturated

C (X ) is quanti�er free saturated

C (X ) is full saturated

CL(X ) is saturated.

in particular the theory of C (2N) has quanti�er elimination.

Question

Are there other C∗-algebras with quanti�er elimination, other than the
obvious ones (C, C2, C (2N), M2(C))?
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This was just a small corner of the, constantly enlarging, sub�eld of
model theory for operator algebras. Developments are needed in both the
abelian case and the non-abelian one, in particular in the framework of
nuclear C∗-algebras.
It is conceivable that continuous model theory may help operator
algebraists to solve problems that are open since decades, and logicians
to understand better the wild world of functional analysis.
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