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Motivation 1: DLP-based crypto

Alice and Bob want to exchange private messages over a public
channel. They agree on a secret key with the following scheme:

1 let G = 〈g〉 be a cyclic group (publicly known)

2 Alice chooses an integer a and sends ga to Bob

3 Bob chooses an integer b and sends gb to Alice

4 Alice computes (gb)
a

5 Bob computes (ga)b

6 the common secret key is gab

Security relies on the fact that it is hard to find b from ga and gab.

This is equivalent to solve the Discrete Logarithm Problem, and no
polynomial-time algorithm for the DLP is known.
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Motivation 2: pairing-based crypto

Let (G1,+) and (G2, ·) be cyclic groups of prime order q.
A pairing map is ε : G1 × G1 → G2 such that

1 ε is bilinear: ε(aP, bQ) = ε(P,Q)ab ∀a, b ∈ F∗q ∀P,Q ∈ G1

2 ε is non-degenerative: P 6= 0 ⇒ e(P,P) 6= 1

3 ε is efficiently computable

Weil pairing:

• G1 is a subgroup of
• the group of points of an elliptic curve over a finite field
• the Jacobian of a hyperelliptic curve over a finite field

• G2 is the group of the q-th roots of unity
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One-round 3-party key exchange

Alice, Bob and Carl want to agree on a common secret key.

1 G1 = 〈P〉 and G2 cyclic groups; pairing ε : G1 × G1 → G2

(publicly known)

2 personal secret keys: a, b, c

3 Alice sends aP to Bob and Carl

4 Bob sends bP to Alice and Carl

5 Carl sends cP to Alice and Bob

6 Alice computes ε(bP, cP)a

7 Bob computes ε(aP, cP)b

8 Carl computes ε(aP, bP)c

9 the common secret key is ε(P,P)abc

Security relies on the Bilinear Diffie-Hellman assumption:
it is hard to find ε(P,P)abc given P, aP, bP, cP.
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State of the art

I Elliptic curve cryptography (ECC):
• proposed independently by Koblitz and Miller in 1985
• extensively studied
• standardised cryptographic protocols
• commercial applications

I Hyperelliptic curve cryptography (HECC):
• proposed by Koblitz in 1989
• still under (theoretical) investigation
• no real-world applications yet

I Pairing-based cryptography:
• initially used for cryptanalisys against supersingular elliptic

curves (MOV attack, 1993; Frey-Rück attack, 1994)
• rediscovered for “good” use by Joux in 2000, and

Boneh-Franklin in 2001
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Hyperelliptic curves

Let Fq be a finite field with q = pn elements.
A hyperelliptic curve H/Fq of genus g ≥ 1 is a non-singular
algebraic curve

y2 + h(x)y = f (x)

where

• h(x), f (x) ∈ Fq[x ]

• f (x) is monic

• deg (f ) = 2g + 1

• deg (h) ≤ g

H has only one point at infinity ∞ = [0 : 1 : 0]

For g = 1, H is an elliptic curve.
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Arithmetic on elliptic curves

We can define the sum of points of H with the chord-tangent rule:

H(Fq) is a finite Abelian group, with neutral element ∞.
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Divisors of a hyperelliptic curve

A divisor is a formal finite sum of points of H:

D =
d∑

i=1

miPi with mi ∈ Z, deg(D) =
d∑

i=1

mi

The set of divisors of H is an additive group.

A principal divisor is

div (F ) =
∑
P∈H

ordF (P)P −

(∑
P∈H

ordF (P)

)
∞

for any rational function F (x , y) on H.

Let Div0 be the subgroup of divisors of degree 0 and P the
subgroup of principal divisors.
The Jacobian of H is J = Div0/P.
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Canonical representation of divisor classes

If we consider only divisors fixed by the Galois group of Fq, then
the Jacobian J(Fq) is a finite Abelian group.

Every divisor class of J(Fq) can be represented by a unique pair of
polynomials a(x), b(x) ∈ Fq[x ] s.t.

• a(x) is monic

• deg(b) < deg(a) ≤ g

• a(x) | b(x)2 + h(x)b(x)− f (x)

Addition in J(Fq) can be performed via polynomial arithmetic
[Cantor’s algorithm, 1987]:

• D1 + D2 ≈ 17g2 + O(g) field operations

• 2D ≈ 16g2 + O(g) field operations
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Security requirements

There are some security requirements for J(Fq) to be suitable for
cryptographic applications:

• g < 4

• H must be not supersingular (except for pairing-based crypto)

• |J(Fq)| must have a large prime factor

• other conditions on |J(Fq)| to be resistant to all known
attacks.

H/Fq is supersingular if there are no divisors of order p in J(Fqm)
for any m ≥ 1.
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Computational problems

1 divisor class counting, i.e. find the order of J(Fq)

2 supersingularity criteria

3 scalar multiplication, i.e. compute nD = D + · · ·+ D for
n ∈ Z, D ∈ J(Fq) in an efficient way

4 pairing computation
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Frobenius endomorphism

The Frobenius endomorphism of H/Fq is

τ(x , y) = (xq, yq)

and has characteristic polynomial

χ(x) = x2g +a1x2g−1+· · ·+agxg +ag−1qxg−1+· · ·+a1qg−1x +qg

Important: |J(Fq)| = χ(1)

χ(x) can be found by counting points on H:

Mk = |H(Fqk )|

ak =
1

k

(
Mk − qk − 1 +

k−1∑
i=1

(Mk−i − qk−i − 1)ai

)
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Point counting on elliptic curves - I

E/Fq : y2 = f (x). By Hasse theorem:

||E (Fq)| − q − 1| ≤ 2
√

q

Frobenius characteristic polynomial: χ(x) = x2 + a1x + q

|E (Fq)| = q + 1− a1

|a1| ≤ 2
√

q

Finding |E (Fq)| is equivalent to find a1

Naive approach: compute the Legendre symbols

|a1| =
∑
x∈Fq

(
f (x)

q

)

It takes O(q log q)  exponential!
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Point counting on elliptic curves - II

Schoof’s algorithm [1985]:

1 compute a1 modulo p for many small primes p such that
Πp ≥ 4

√
q

2 find a1 with the Chinese Remainder Theorem

• can compute |E (Fq)| in deterministic polynomial time
O(log8 q)

• SEA algorithm: restrict the set of primes  O(log4 q)
probabilistic
(e.g. SEA is implemented in PARI/GP)

• there exist (in theory) polynomial-time SEA-like algorithms for
hyperelliptic curves, but they are difficult to implement

• there is a practical algorithm only for g = 2
[Gaudry-Harley 2000]
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Supersingularity

Point counting on hyperelliptic curves is important

• to find Frobenius characteristic polynomial χ(x)

• to determine the order of the Jacobian |J(Fq)|

...but also to tell whether a curve is supersingular or not.

Stichtenoth-Xing criterion [1995]:

H/Fq supersingular ⇔ ak ≡ 0 mod pd
kn
2
e ∀k = 1 . . . g

(a1, . . . , ag are the coefficients of χ(x) and q = pn)
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Scalar multiplication - I

H/Fq and D ∈ J(Fqm), compute nD for n ∈ Z, n > 0

Standard method: use binary expansion of n

n =
L∑

i=0

di2
i , di ∈ {0, 1}

nD = d0D + 2(d1D + 2(d2D + · · ·+ dLD))

# divisor doublings ≈ length of the expansion
# divisor additions ≈ weight of the expansion
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Scalar multiplication - II

τ(x , y) = (xq, yq) induces an endomorphism on J(Fqm):

τ ([a(x), b(x)]) =
[
a(q)(x), b(q)(x)

]
which requires at most 2g q-th powers (i.e. cyclic shifts) in Fqm

Idea: represent integers to the basis τ

n =
L∑

i=0

diτ
i

nD = d0D + τ(d1D + τ(d2D + · · ·+ dLD))

# evaluations of τ ≈ length of the expansion
# divisor additions ≈ weight of the expansion
plus some precomputation (diD)
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Scalar multiplication - III

Improvements:

• reduce the number of divisor additions by using a w -NAF
expansion, i.e. in every block of w consecutive digits there is
at most one non-zero digit

• reduce the precomputation effort by means of symmetric
digit sets.

Questions:

• existence of a finite τ -adic expansion for every integer?

• average weight of the expansion?

• length of the expansion?

• practical recoding algorithm?
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