Computational Aspects of Hyperelliptic Curve Cryptography

Michela Mazzoli

Institut für Mathematik
Alpen-Adria-Universität Klagenfurt

Torino, 22 Dicembre 2014

Alpen-Adria-Universität Klagenfurt, Austria

Motivation 1: DLP-based crypto

Alice and Bob want to exchange private messages over a public channel. They agree on a secret key with the following scheme:
(1) let $G=\langle g\rangle$ be a cyclic group (publicly known)
(2) Alice chooses an integer a and sends g^{a} to Bob
(3) Bob chooses an integer b and sends g^{b} to Alice
(4) Alice computes $\left(g^{b}\right)^{a}$
(5) Bob computes $\left(g^{a}\right)^{b}$
(6) the common secret key is $g^{a b}$

Security relies on the fact that it is hard to find b from g^{a} and $g^{a b}$.
This is equivalent to solve the Discrete Logarithm Problem, and no polynomial-time algorithm for the DLP is known.

Motivation 2: pairing-based crypto

Let $\left(G_{1},+\right)$ and $\left(G_{2}, \cdot\right)$ be cyclic groups of prime order q. A pairing map is $\varepsilon: G_{1} \times G_{1} \rightarrow G_{2}$ such that
(1) ε is bilinear: $\varepsilon(a P, b Q)=\varepsilon(P, Q)^{a b} \quad \forall a, b \in \mathbb{F}_{q}^{*} \forall P, Q \in G_{1}$
(2) ε is non-degenerative: $P \neq 0 \Rightarrow e(P, P) \neq 1$
(3) ε is efficiently computable

Motivation 2: pairing-based crypto

Let $\left(G_{1},+\right)$ and $\left(G_{2}, \cdot\right)$ be cyclic groups of prime order q.
A pairing map is $\varepsilon: G_{1} \times G_{1} \rightarrow G_{2}$ such that
(1) ε is bilinear: $\varepsilon(a P, b Q)=\varepsilon(P, Q)^{a b} \quad \forall a, b \in \mathbb{F}_{q}^{*} \forall P, Q \in G_{1}$
(2) ε is non-degenerative: $P \neq 0 \Rightarrow e(P, P) \neq 1$
(3) ε is efficiently computable

Weil pairing:

- G_{1} is a subgroup of
- the group of points of an elliptic curve over a finite field
- the Jacobian of a hyperelliptic curve over a finite field
- G_{2} is the group of the q-th roots of unity

One-round 3-party key exchange

Alice, Bob and Carl want to agree on a common secret key.
(1) $G_{1}=\langle P\rangle$ and G_{2} cyclic groups; pairing $\varepsilon: G_{1} \times G_{1} \rightarrow G_{2}$ (publicly known)
(2) personal secret keys: a, b, c
(3) Alice sends $a P$ to Bob and Carl
(4) Bob sends $b P$ to Alice and Carl
(5) Carl sends $c P$ to Alice and Bob
(6) Alice computes $\varepsilon(b P, c P)^{a}$
(7) Bob computes $\varepsilon(a P, c P)^{b}$
(8) Carl computes $\varepsilon(a P, b P)^{c}$
(0) the common secret key is $\varepsilon(P, P)^{a b c}$

Security relies on the Bilinear Diffie-Hellman assumption: it is hard to find $\varepsilon(P, P)^{a b c}$ given $P, a P, b P, c P$.

State of the art

- Elliptic curve cryptography (ECC):
- proposed independently by Koblitz and Miller in 1985
- extensively studied
- standardised cryptographic protocols
- commercial applications

State of the art

- Elliptic curve cryptography (ECC):
- proposed independently by Koblitz and Miller in 1985
- extensively studied
- standardised cryptographic protocols
- commercial applications
- Hyperelliptic curve cryptography (HECC):
- proposed by Koblitz in 1989
- still under (theoretical) investigation
- no real-world applications yet

State of the art

- Elliptic curve cryptography (ECC):
- proposed independently by Koblitz and Miller in 1985
- extensively studied
- standardised cryptographic protocols
- commercial applications
- Hyperelliptic curve cryptography (HECC):
- proposed by Koblitz in 1989
- still under (theoretical) investigation
- no real-world applications yet
- Pairing-based cryptography:
- initially used for cryptanalisys against supersingular elliptic curves (MOV attack, 1993; Frey-Rück attack, 1994)
- rediscovered for "good" use by Joux in 2000, and Boneh-Franklin in 2001

Hyperelliptic curves

Let \mathbb{F}_{q} be a finite field with $q=p^{n}$ elements.
A hyperelliptic curve H / \mathbb{F}_{q} of genus $g \geq 1$ is a non-singular algebraic curve

$$
y^{2}+h(x) y=f(x)
$$

where

- $h(x), f(x) \in \mathbb{F}_{q}[x]$
- $f(x)$ is monic
- $\operatorname{deg}(f)=2 g+1$
- $\operatorname{deg}(h) \leq g$
H has only one point at infinity $\infty=[0: 1: 0]$
For $g=1, H$ is an elliptic curve.

Arithmetic on elliptic curves

We can define the sum of points of H with the chord-tangent rule:

$H\left(\mathbb{F}_{q}\right)$ is a finite Abelian group, with neutral element ∞.

Divisors of a hyperelliptic curve

A divisor is a formal finite sum of points of H :

$$
D=\sum_{i=1}^{d} m_{i} P_{i} \quad \text { with } m_{i} \in \mathbb{Z}, \quad \operatorname{deg}(D)=\sum_{i=1}^{d} m_{i}
$$

The set of divisors of H is an additive group.
A principal divisor is

$$
\operatorname{div}(F)=\sum_{P \in H} \operatorname{ord}_{F}(P) P-\left(\sum_{P \in H} \operatorname{ord}_{F}(P)\right) \infty
$$

for any rational function $F(x, y)$ on H.
Let Div 0 be the subgroup of divisors of degree 0 and \mathcal{P} the subgroup of principal divisors.
The Jacobian of H is $J=\operatorname{Div}^{0} / \mathcal{P}$.

Canonical representation of divisor classes

If we consider only divisors fixed by the Galois group of \mathbb{F}_{q}, then the Jacobian $J\left(\mathbb{F}_{q}\right)$ is a finite Abelian group.

Every divisor class of $J\left(\mathbb{F}_{q}\right)$ can be represented by a unique pair of polynomials $a(x), b(x) \in \mathbb{F}_{q}[x]$ s.t.

- $a(x)$ is monic
- $\operatorname{deg}(b)<\operatorname{deg}(a) \leq g$
- $a(x) \mid b(x)^{2}+h(x) b(x)-f(x)$

Addition in $J\left(\mathbb{F}_{q}\right)$ can be performed via polynomial arithmetic [Cantor's algorithm, 1987]:

- $D_{1}+D_{2} \approx 17 g^{2}+O(g)$ field operations
- $2 D \approx 16 g^{2}+O(g)$ field operations

Security requirements

There are some security requirements for $J\left(\mathbb{F}_{q}\right)$ to be suitable for cryptographic applications:

- $g<4$
- H must be not supersingular (except for pairing-based crypto)
- $\left|J\left(\mathbb{F}_{q}\right)\right|$ must have a large prime factor
- other conditions on $\left|J\left(\mathbb{F}_{q}\right)\right|$ to be resistant to all known attacks.
H / \mathbb{F}_{q} is supersingular if there are no divisors of order p in $J\left(\mathbb{F}_{q^{m}}\right)$ for any $m \geq 1$.

Computational problems

(1) divisor class counting, i.e. find the order of $J\left(\mathbb{F}_{q}\right)$
(2) supersingularity criteria
(3) scalar multiplication, i.e. compute $n D=D+\cdots+D$ for $n \in \mathbb{Z}, D \in J\left(\mathbb{F}_{q}\right)$ in an efficient way
(4) pairing computation

Frobenius endomorphism

The Frobenius endomorphism of H / \mathbb{F}_{q} is

$$
\tau(x, y)=\left(x^{q}, y^{q}\right)
$$

and has characteristic polynomial
$\chi(x)=x^{2 g}+a_{1} x^{2 g-1}+\cdots+a_{g} x^{g}+a_{g-1} q x^{g-1}+\cdots+a_{1} q^{g-1} x+q^{g}$

Important: $\left|J\left(\mathbb{F}_{q}\right)\right|=\chi(1)$
$\chi(x)$ can be found by counting points on H :

$$
\begin{aligned}
M_{k} & =\left|H\left(\mathbb{F}_{q^{k}}\right)\right| \\
a_{k} & =\frac{1}{k}\left(M_{k}-q^{k}-1+\sum_{i=1}^{k-1}\left(M_{k-i}-q^{k-i}-1\right) a_{i}\right)
\end{aligned}
$$

Point counting on elliptic curves - I

$E / \mathbb{F}_{q}: y^{2}=f(x)$. By Hasse theorem:

$$
\left|\left|E\left(\mathbb{F}_{q}\right)\right|-q-1\right| \leq 2 \sqrt{q}
$$

Frobenius characteristic polynomial: $\chi(x)=x^{2}+a_{1} x+q$

$$
\begin{aligned}
\left|E\left(\mathbb{F}_{q}\right)\right| & =q+1-a_{1} \\
\left|a_{1}\right| & \leq 2 \sqrt{q}
\end{aligned}
$$

Finding $\left|E\left(\mathbb{F}_{q}\right)\right|$ is equivalent to find a_{1}
Naive approach: compute the Legendre symbols

$$
\left|a_{1}\right|=\sum_{x \in \mathbb{F}_{q}}\left(\frac{f(x)}{q}\right)
$$

It takes $O(q \log q) \rightsquigarrow$ exponential!

Point counting on elliptic curves - II

Schoof's algorithm [1985]:
(1) compute a_{1} modulo p for many small primes p such that $\Pi p \geq 4 \sqrt{q}$
(2) find a_{1} with the Chinese Remainder Theorem

Point counting on elliptic curves - II

Schoof's algorithm [1985]:
(1) compute a_{1} modulo p for many small primes p such that $\Pi p \geq 4 \sqrt{q}$
(2) find a_{1} with the Chinese Remainder Theorem

- can compute $\left|E\left(\mathbb{F}_{q}\right)\right|$ in deterministic polynomial time $O\left(\log ^{8} q\right)$
- SEA algorithm: restrict the set of primes $\rightsquigarrow O\left(\log ^{4} q\right)$ probabilistic
(e.g. SEA is implemented in PARI/GP)
- there exist (in theory) polynomial-time SEA-like algorithms for hyperelliptic curves, but they are difficult to implement
- there is a practical algorithm only for $g=2$
[Gaudry-Harley 2000]

Supersingularity

Point counting on hyperelliptic curves is important

- to find Frobenius characteristic polynomial $\chi(x)$
- to determine the order of the Jacobian $\left|J\left(\mathbb{F}_{q}\right)\right|$

Supersingularity

Point counting on hyperelliptic curves is important

- to find Frobenius characteristic polynomial $\chi(x)$
- to determine the order of the Jacobian $\left|J\left(\mathbb{F}_{q}\right)\right|$
...but also to tell whether a curve is supersingular or not.
Stichtenoth-Xing criterion [1995]:

$$
H / \mathbb{F}_{q} \text { supersingular } \Leftrightarrow a_{k} \equiv 0 \quad \bmod p^{\left\lceil\frac{k n}{2}\right\rceil} \forall k=1 \ldots g
$$

$\left(a_{1}, \ldots, a_{g}\right.$ are the coefficients of $\chi(x)$ and $\left.q=p^{n}\right)$

Scalar multiplication - I

H / \mathbb{F}_{q} and $D \in J\left(\mathbb{F}_{q^{m}}\right)$, compute $n D$ for $n \in \mathbb{Z}, n>0$
Standard method: use binary expansion of n

$$
\begin{aligned}
n & =\sum_{i=0}^{L} d_{i} 2^{i}, \quad d_{i} \in\{0,1\} \\
n D & =d_{0} D+2\left(d_{1} D+2\left(d_{2} D+\cdots+d_{L} D\right)\right)
\end{aligned}
$$

\# divisor doublings \approx length of the expansion
\# divisor additions \approx weight of the expansion

Scalar multiplication - II

$\tau(x, y)=\left(x^{q}, y^{q}\right)$ induces an endomorphism on $J\left(\mathbb{F}_{q^{m}}\right)$:

$$
\tau([a(x), b(x)])=\left[a^{(q)}(x), b^{(q)}(x)\right]
$$

which requires at most $2 g q$-th powers (i.e. cyclic shifts) in $\mathbb{F}_{q^{m}}$ Idea: represent integers to the basis τ

$$
\begin{aligned}
n & =\sum_{i=0}^{L} d_{i} \tau^{i} \\
n D & =d_{0} D+\tau\left(d_{1} D+\tau\left(d_{2} D+\cdots+d_{L} D\right)\right)
\end{aligned}
$$

\# evaluations of $\tau \approx$ length of the expansion \# divisor additions \approx weight of the expansion plus some precomputation $\left(d_{i} D\right)$

Scalar multiplication - III

Improvements:

- reduce the number of divisor additions by using a w-NAF expansion, i.e. in every block of w consecutive digits there is at most one non-zero digit
- reduce the precomputation effort by means of symmetric digit sets.

Questions:

- existence of a finite τ-adic expansion for every integer?
- average weight of the expansion?
- length of the expansion?
- practical recoding algorithm?

Grazie per l'attenzione!

