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Elliptic Curves

Let K be a field (of characteristic 0) and consider a curve defined
by

F (X ,Y ) = 0,

for F (X ,Y ) ∈ K [X ,Y ].

If F has the special form

F = Y 2 − f (X ),

where f is a degree 3 polynomial with simple roots, we call the
curve an Elliptic Curve.
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On the set
{(x , y) ∈ K 2 : F (x , y) = 0} ∪ {O}.

a group law can be defined. The group is abelian.

Mordell (1922): The group of rational points of an elliptic curve
over Q is finitely generated. Example:

Y 2 = X 3 − 82X ,

the group of rational points is isomorphic to

Z3 × Z/2Z.
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Legendre family

Let Eλ be the elliptic curve with Legendre equation

Y 2 = X (X − 1)(X − λ).

We can view it in two ways:

as an elliptic curve over Q(λ), where λ is some variable;

as a family of elliptic curves for λ ∈ C \ {0, 1}.
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Consider the points

P1(λ) =
(

2,
√

2(2− λ)
)

and P2(λ) =
(

3,
√

6(3− λ)
)
,

in Eλ

(
Q(λ)

)
.

These points are generically linearly independent, i.e.,
if nP1(λ) = mP2(λ) then n = m = 0.
Consider

R =
{
λ0 ∈ C : ∃(n,m) ∈ Z2 \ {(0, 0)} : nP1(λ0) = mP2(λ0)

}
.

We have that this is a set of algebraic numbers and by Silverman
Specialization Theorem, it is a set of bounded height.
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This means that for every d ∈ N

R ∩
{
α ∈ Q : [Q(α) : Q] ≤ d

}
is finite.

Question

What about the λ0 such that there are linearly independent
a, b ∈ Z2 with a1P1(λ0) = a2P2(λ0) and b1P1(λ0) = b2P2(λ0),
i.e., the points have finite order?
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Theorem (Masser, Zannier)

There are at most finitely many λ0 such that P1(λ0) and P2(λ0)
are simultaneously torsion on Eλ0 .

Stoll: There is actually no such λ0.

More generally, Masser and Zannier proved the Theorem for any
complex distinct abscissas ( 6= 0, 1).
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This is an instance of the so-called Unlikely Intersections:

Our space S = {(x1, y1, x2, y2, λ) : (xi , yi ) ∈ Eλ} has dimension 3.

Fixing abscissas gives a curve in S .

Fixing the finite order of the two points gives a curve.

We are intersecting a curve with a countable union of curves in a
space of dimension 3: Unlikely Intersections!
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Consider
P3(λ) =

(
5,
√

20(5− λ)
)
.

The points P1(λ), P2(λ) and P3(λ) are still generically
independentand{
λ0 ∈ C : ∃a ∈ Z3 \ {0} : a1P1(λ0) + a2P2(λ0) + a3P3(λ0) = O

}
is an infinite set of bounded height.
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Theorem

There are at most finitely many λ0 such that P1(λ0), P2(λ0) and
P3(λ0) satisfy two independent relations on Eλ0 .

We were able to substitute 2, 3, 5 with pairwise distinct algebraic
abscissas, and consider arbitrary many points
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Theorem (B., Capuano)

Let C ⊆ A2n+1 be an irreducible curve defined over Q with
coordinate functions (x1, y1, . . . , xn, yn, λ), λ non-constant, such
that, for every j = 1, . . . , n, the points Pj = (xj , yj) lie on Eλ and
there are no integers a1, . . . , an ∈ Z, not all zero, such that

a1P1 + · · ·+ anPn = O,

identically on C. Then there are at most finitely many c ∈ C such
that the points P1(c), . . . ,Pn(c) satisfy two independent relations
on Eλ(c).
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This is an instance of the so-called Unlikely Intersections:

Our space S = {(x1, y1, . . . , xn, yn, λ) : (xi , yi ) ∈ Eλ} has
dimension n + 1.

We have a curve C in S .

Fixing two independent relations gives something of dimension
n − 1.

We are intersecting a curve with a countable union of n − 1-folds
in a space of dimension n + 1: Unlikely Intersections!
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The Zilber-Pink Conjecture

Conjecture

Let A be an abelian scheme over a variety defined over C, and
denote by A[c] the union of its abelian subschemes of codimension
at least c . Let V be an irreducible closed subvariety of A. Then
V ∩ A[1+dim V] is contained in a finite union of abelian subschemes
of A of positive codimension.
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Theorem

Let A be an abelian scheme over a variety defined over Q and
suppose that A is isogenous to the fiber product of n isogenous
elliptic schemes. Let V be an irreducible closed curve in A. Then
V ∩ A[2] is contained in a finite union of abelian subschemes of A
of positive codimension.
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