# Linear relations in families of powers of elliptic curves 

 joint work with Laura CapuanoWorkshop, Torino 22/12/2014

## Elliptic Curves

Let $K$ be a field (of characteristic 0 ) and consider a curve defined by

$$
F(X, Y)=0
$$

for $F(X, Y) \in K[X, Y]$.

## Elliptic Curves

Let $K$ be a field (of characteristic 0 ) and consider a curve defined by

$$
F(X, Y)=0
$$

for $F(X, Y) \in K[X, Y]$. If $F$ has the special form

$$
F=Y^{2}-f(X)
$$

where $f$ is a degree 3 polynomial with simple roots, we call the curve an Elliptic Curve.

On the set

$$
\left\{(x, y) \in K^{2}: F(x, y)=0\right\} \cup\{O\} .
$$

a group law can be defined. The group is abelian.

On the set

$$
\left\{(x, y) \in K^{2}: F(x, y)=0\right\} \cup\{O\} .
$$

a group law can be defined. The group is abelian.

Mordell (1922): The group of rational points of an elliptic curve over $\mathbb{Q}$ is finitely generated.

On the set

$$
\left\{(x, y) \in K^{2}: F(x, y)=0\right\} \cup\{O\} .
$$

a group law can be defined. The group is abelian.

Mordell (1922): The group of rational points of an elliptic curve over $\mathbb{Q}$ is finitely generated. Example:

$$
Y^{2}=X^{3}-82 X
$$

the group of rational points is isomorphic to

$$
\mathbb{Z}^{3} \times \mathbb{Z} / 2 \mathbb{Z}
$$

## Legendre family

Let $E_{\lambda}$ be the elliptic curve with Legendre equation

$$
Y^{2}=X(X-1)(X-\lambda)
$$

## Legendre family

Let $E_{\lambda}$ be the elliptic curve with Legendre equation

$$
Y^{2}=X(X-1)(X-\lambda)
$$

We can view it in two ways:
■ as an elliptic curve over $\mathbb{Q}(\lambda)$, where $\lambda$ is some variable;

- as a family of elliptic curves for $\lambda \in \mathbb{C} \backslash\{0,1\}$.

Consider the points

$$
\begin{aligned}
& \quad P_{1}(\lambda)=(2, \sqrt{2(2-\lambda)}) \quad \text { and } \quad P_{2}(\lambda)=(3, \sqrt{6(3-\lambda)}), \\
& \text { in } E_{\lambda}(\overline{\mathbb{Q}(\lambda)}) \text {. }
\end{aligned}
$$

Consider the points

$$
\begin{aligned}
& \quad P_{1}(\lambda)=(2, \sqrt{2(2-\lambda)}) \quad \text { and } \quad P_{2}(\lambda)=(3, \sqrt{6(3-\lambda)}), \\
& \text { in } E_{\lambda}(\overline{\mathbb{Q}(\lambda)}) .
\end{aligned}
$$

These points are generically linearly independent, i.e., if $n P_{1}(\lambda)=m P_{2}(\lambda)$ then $n=m=0$.

Consider the points

$$
P_{1}(\lambda)=(2, \sqrt{2(2-\lambda)}) \quad \text { and } \quad P_{2}(\lambda)=(3, \sqrt{6(3-\lambda)})
$$

in $E_{\lambda}(\overline{\mathbb{Q}(\lambda)})$.
These points are generically linearly independent, i.e., if $n P_{1}(\lambda)=m P_{2}(\lambda)$ then $n=m=0$.
Consider

$$
R=\left\{\lambda_{0} \in \mathbb{C}: \exists(n, m) \in \mathbb{Z}^{2} \backslash\{(0,0)\}: n P_{1}\left(\lambda_{0}\right)=m P_{2}\left(\lambda_{0}\right)\right\}
$$

Consider the points

$$
P_{1}(\lambda)=(2, \sqrt{2(2-\lambda)}) \quad \text { and } \quad P_{2}(\lambda)=(3, \sqrt{6(3-\lambda)})
$$

in $E_{\lambda}(\overline{\mathbb{Q}(\lambda)})$.
These points are generically linearly independent, i.e., if $n P_{1}(\lambda)=m P_{2}(\lambda)$ then $n=m=0$.
Consider

$$
R=\left\{\lambda_{0} \in \mathbb{C}: \exists(n, m) \in \mathbb{Z}^{2} \backslash\{(0,0)\}: n P_{1}\left(\lambda_{0}\right)=m P_{2}\left(\lambda_{0}\right)\right\}
$$

We have that this is a set of algebraic numbers and by Silverman Specialization Theorem, it is a set of bounded height.

This means that for every $d \in \mathbb{N}$

$$
R \cap\{\alpha \in \overline{\mathbb{Q}}:[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}
$$

is finite.

This means that for every $d \in \mathbb{N}$

$$
R \cap\{\alpha \in \overline{\mathbb{Q}}:[\mathbb{Q}(\alpha): \mathbb{Q}] \leq d\}
$$

is finite.

## Question

What about the $\lambda_{0}$ such that there are linearly independent $a, b \in \mathbb{Z}^{2}$ with $a_{1} P_{1}\left(\lambda_{0}\right)=a_{2} P_{2}\left(\lambda_{0}\right)$ and $b_{1} P_{1}\left(\lambda_{0}\right)=b_{2} P_{2}\left(\lambda_{0}\right)$, i.e., the points have finite order?

## Theorem (Masser, Zannier)

There are at most finitely many $\lambda_{0}$ such that $P_{1}\left(\lambda_{0}\right)$ and $P_{2}\left(\lambda_{0}\right)$ are simultaneously torsion on $E_{\lambda_{0}}$.

## Theorem (Masser, Zannier)

There are at most finitely many $\lambda_{0}$ such that $P_{1}\left(\lambda_{0}\right)$ and $P_{2}\left(\lambda_{0}\right)$ are simultaneously torsion on $E_{\lambda_{0}}$.

Stoll: There is actually no such $\lambda_{0}$.

## Theorem (Masser, Zannier)

There are at most finitely many $\lambda_{0}$ such that $P_{1}\left(\lambda_{0}\right)$ and $P_{2}\left(\lambda_{0}\right)$ are simultaneously torsion on $E_{\lambda_{0}}$.

Stoll: There is actually no such $\lambda_{0}$.

More generally, Masser and Zannier proved the Theorem for any complex distinct abscissas $(\neq 0,1)$.

# This is an instance of the so-called Unlikely Intersections: 

This is an instance of the so-called Unlikely Intersections:
Our space $S=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}, \lambda\right):\left(x_{i}, y_{i}\right) \in E_{\lambda}\right\}$ has dimension 3 .

This is an instance of the so-called Unlikely Intersections:
Our space $S=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}, \lambda\right):\left(x_{i}, y_{i}\right) \in E_{\lambda}\right\}$ has dimension 3 .
Fixing abscissas gives a curve in $S$.

This is an instance of the so-called Unlikely Intersections:
Our space $S=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}, \lambda\right):\left(x_{i}, y_{i}\right) \in E_{\lambda}\right\}$ has dimension 3 .
Fixing abscissas gives a curve in $S$.
Fixing the finite order of the two points gives a curve.

This is an instance of the so-called Unlikely Intersections:
Our space $S=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}, \lambda\right):\left(x_{i}, y_{i}\right) \in E_{\lambda}\right\}$ has dimension 3 .
Fixing abscissas gives a curve in $S$.
Fixing the finite order of the two points gives a curve.
We are intersecting a curve with a countable union of curves in a space of dimension 3: Unlikely Intersections!

## Consider

$$
P_{3}(\lambda)=(5, \sqrt{20(5-\lambda)}) .
$$

Consider

$$
P_{3}(\lambda)=(5, \sqrt{20(5-\lambda)}) .
$$

The points $P_{1}(\lambda), P_{2}(\lambda)$ and $P_{3}(\lambda)$ are still generically independent

Consider

$$
P_{3}(\lambda)=(5, \sqrt{20(5-\lambda)})
$$

The points $P_{1}(\lambda), P_{2}(\lambda)$ and $P_{3}(\lambda)$ are still generically independentand

$$
\left\{\lambda_{0} \in \mathbb{C}: \exists a \in \mathbb{Z}^{3} \backslash\{0\}: a_{1} P_{1}\left(\lambda_{0}\right)+a_{2} P_{2}\left(\lambda_{0}\right)+a_{3} P_{3}\left(\lambda_{0}\right)=O\right\}
$$

is an infinite set of bounded height.

## Theorem

There are at most finitely many $\lambda_{0}$ such that $P_{1}\left(\lambda_{0}\right), P_{2}\left(\lambda_{0}\right)$ and $P_{3}\left(\lambda_{0}\right)$ satisfy two independent relations on $E_{\lambda_{0}}$.

## Theorem

There are at most finitely many $\lambda_{0}$ such that $P_{1}\left(\lambda_{0}\right), P_{2}\left(\lambda_{0}\right)$ and $P_{3}\left(\lambda_{0}\right)$ satisfy two independent relations on $E_{\lambda_{0}}$.

We were able to substitute 2, 3, 5 with pairwise distinct algebraic abscissas, and consider arbitrary many points

## Theorem (B., Capuano)

Let $\mathcal{C} \subseteq \mathbb{A}^{2 n+1}$ be an irreducible curve defined over $\overline{\mathbb{Q}}$ with coordinate functions $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, \lambda\right), \lambda$ non-constant, such that, for every $j=1, \ldots, n$, the points $P_{j}=\left(x_{j}, y_{j}\right)$ lie on $E_{\lambda}$ and there are no integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$, not all zero, such that

$$
a_{1} P_{1}+\cdots+a_{n} P_{n}=O
$$

identically on $\mathcal{C}$. Then there are at most finitely many $\underline{c} \in \mathcal{C}$ such that the points $P_{1}(\underline{c}), \ldots, P_{n}(\underline{c})$ satisfy two independent relations on $E_{\lambda(\underline{c})}$.

This is an instance of the so-called Unlikely Intersections:
Our space $S=\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, \lambda\right):\left(x_{i}, y_{i}\right) \in E_{\lambda}\right\}$ has dimension $n+1$.

This is an instance of the so-called Unlikely Intersections:
Our space $S=\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, \lambda\right):\left(x_{i}, y_{i}\right) \in E_{\lambda}\right\}$ has dimension $n+1$.

We have a curve $\mathcal{C}$ in $S$.

This is an instance of the so-called Unlikely Intersections:
Our space $S=\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, \lambda\right):\left(x_{i}, y_{i}\right) \in E_{\lambda}\right\}$ has dimension $n+1$.

We have a curve $\mathcal{C}$ in $S$.
Fixing two independent relations gives something of dimension $n-1$.

This is an instance of the so-called Unlikely Intersections:
Our space $S=\left\{\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}, \lambda\right):\left(x_{i}, y_{i}\right) \in E_{\lambda}\right\}$ has dimension $n+1$.

We have a curve $\mathcal{C}$ in $S$.
Fixing two independent relations gives something of dimension $n-1$.

We are intersecting a curve with a countable union of $n-1$-folds in a space of dimension $n+1$ : Unlikely Intersections!

## The Zilber-Pink Conjecture

## Conjecture

Let $\mathcal{A}$ be an abelian scheme over a variety defined over $\mathbb{C}$, and denote by $\mathcal{A}^{[c]}$ the union of its abelian subschemes of codimension at least $c$. Let $\mathcal{V}$ be an irreducible closed subvariety of $\mathcal{A}$. Then $\mathcal{V} \cap \mathcal{A}^{[1+\operatorname{dim} \mathcal{V}]}$ is contained in a finite union of abelian subschemes of $\mathcal{A}$ of positive codimension.

## Theorem

Let $\mathcal{A}$ be an abelian scheme over a variety defined over $\overline{\mathbb{Q}}$ and suppose that $\mathcal{A}$ is isogenous to the fiber product of $n$ isogenous elliptic schemes. Let $\mathcal{V}$ be an irreducible closed curve in $\mathcal{A}$. Then $\mathcal{V} \cap \mathcal{A}^{[2]}$ is contained in a finite union of abelian subschemes of $\mathcal{A}$ of positive codimension.

