Linear relations in families of powers of elliptic curves

joint work with Laura Capuano

Workshop, Torino 22/12/2014

Fabrizio Barroero

Scuola Normale Superiore

Let K be a field (of characteristic 0) and consider a curve defined by

$$F(X,Y)=0,$$

for $F(X, Y) \in K[X, Y]$.

Fabrizio Barroero

Scuola Normale Superiore

Let K be a field (of characteristic 0) and consider a curve defined by

$$F(X,Y)=0,$$

for $F(X, Y) \in K[X, Y]$. If F has the special form

$$F=Y^2-f(X),$$

Scuola Normale Superiore

where f is a degree 3 polynomial with simple roots, we call the curve an *Elliptic Curve*.

Fabrizio Barroero

On the set

$$\{(x, y) \in K^2 : F(x, y) = 0\} \cup \{O\}.$$

a group law can be defined. The group is abelian.

Fabrizio Barroero

Scuola Normale Superiore

On the set

$$\{(x,y) \in K^2 : F(x,y) = 0\} \cup \{O\}.$$

a group law can be defined. The group is abelian.

Mordell (1922): The group of rational points of an elliptic curve over \mathbb{Q} is finitely generated.

Fabrizio Barroero

Scuola Normale Superiore

On the set

$$\{(x,y) \in K^2 : F(x,y) = 0\} \cup \{O\}.$$

a group law can be defined. The group is abelian.

Mordell (1922): The group of rational points of an elliptic curve over \mathbb{Q} is finitely generated. Example:

$$Y^2 = X^3 - 82X,$$

the group of rational points is isomorphic to

 $\mathbb{Z}^3 \times \mathbb{Z}/2\mathbb{Z}.$

< 口 > < 同

Scuola Normale Superiore

Fabrizio Barroero

Let E_{λ} be the elliptic curve with Legendre equation

$$Y^2 = X(X-1)(X-\lambda).$$

Fabrizio Barroero

Scuola Normale Superiore

Let E_{λ} be the elliptic curve with Legendre equation

$$Y^2 = X(X-1)(X-\lambda).$$

We can view it in two ways:

- as an elliptic curve over $\mathbb{Q}(\lambda)$, where λ is some variable;
- as a family of elliptic curves for $\lambda \in \mathbb{C} \setminus \{0, 1\}$.

$$P_1(\lambda) = \left(2, \sqrt{2(2-\lambda)}\right)$$
 and $P_2(\lambda) = \left(3, \sqrt{6(3-\lambda)}\right)$,
in $E_{\lambda}\left(\overline{\mathbb{Q}(\lambda)}\right)$.

Fabrizio Barroero

Scuola Normale Superiore

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

$$P_1(\lambda) = \left(2, \sqrt{2(2-\lambda)}\right)$$
 and $P_2(\lambda) = \left(3, \sqrt{6(3-\lambda)}\right)$,
in $E_{\lambda}\left(\overline{\mathbb{Q}(\lambda)}\right)$.

These points are generically linearly independent, i.e., if $nP_1(\lambda) = mP_2(\lambda)$ then n = m = 0.

Scuola Normale Superiore

Fabrizio Barroero

$$P_1(\lambda) = \left(2, \sqrt{2(2-\lambda)}\right)$$
 and $P_2(\lambda) = \left(3, \sqrt{6(3-\lambda)}\right)$,
in $E_{\lambda}\left(\overline{\mathbb{Q}(\lambda)}\right)$.

These points are generically linearly independent, i.e., if $nP_1(\lambda) = mP_2(\lambda)$ then n = m = 0. Consider

$$R = \left\{\lambda_0 \in \mathbb{C} : \exists (n,m) \in \mathbb{Z}^2 \setminus \{(0,0)\} : nP_1(\lambda_0) = mP_2(\lambda_0)\right\}.$$

Fabrizio Barroero

Scuola Normale Superiore

$$P_1(\lambda) = \left(2, \sqrt{2(2-\lambda)}\right)$$
 and $P_2(\lambda) = \left(3, \sqrt{6(3-\lambda)}\right)$,
in $E_{\lambda}\left(\overline{\mathbb{Q}(\lambda)}\right)$.

These points are generically linearly independent, i.e., if $nP_1(\lambda) = mP_2(\lambda)$ then n = m = 0. Consider

$$R = \left\{\lambda_0 \in \mathbb{C} : \exists (n,m) \in \mathbb{Z}^2 \setminus \{(0,0)\} : nP_1(\lambda_0) = mP_2(\lambda_0)\right\}.$$

We have that this is a set of algebraic numbers and by Silverman Specialization Theorem, it is a set of bounded height.

Scuola Normale Superiore

Fabrizio Barroero

This means that for every $d \in \mathbb{N}$

$$R \cap \left\{ \alpha \in \overline{\mathbb{Q}} : [\mathbb{Q}(\alpha) : \mathbb{Q}] \le d \right\}$$

is finite.

Fabrizio Barroero

Scuola Normale Superiore

This means that for every $d \in \mathbb{N}$

$$R \cap \left\{ \alpha \in \overline{\mathbb{Q}} : [\mathbb{Q}(\alpha) : \mathbb{Q}] \le d \right\}$$

is finite.

Question

What about the λ_0 such that there are linearly independent $a, b \in \mathbb{Z}^2$ with $a_1P_1(\lambda_0) = a_2P_2(\lambda_0)$ and $b_1P_1(\lambda_0) = b_2P_2(\lambda_0)$, i.e., the points have finite order?

Fabrizio Barroero

Scuola Normale Superiore

Theorem (Masser, Zannier)

There are at most finitely many λ_0 such that $P_1(\lambda_0)$ and $P_2(\lambda_0)$ are simultaneously torsion on E_{λ_0} .

Fabrizio Barroero

Scuola Normale Superiore

< □ > < 同 >

Theorem (Masser, Zannier)

There are at most finitely many λ_0 such that $P_1(\lambda_0)$ and $P_2(\lambda_0)$ are simultaneously torsion on E_{λ_0} .

Stoll: There is actually no such λ_0 .

Fabrizio Barroero

Scuola Normale Superiore

< A

Theorem (Masser, Zannier)

There are at most finitely many λ_0 such that $P_1(\lambda_0)$ and $P_2(\lambda_0)$ are simultaneously torsion on E_{λ_0} .

Stoll: There is actually no such λ_0 .

More generally, Masser and Zannier proved the Theorem for any complex distinct abscissas ($\neq 0, 1$).

< 何

Fabrizio Barroero

Scuola Normale Superiore

Our space $S = \{(x_1, y_1, x_2, y_2, \lambda) : (x_i, y_i) \in E_{\lambda}\}$ has dimension 3.

Linear relations in families of powers of elliptic curves

Fabrizio Barroero

Our space $S = \{(x_1, y_1, x_2, y_2, \lambda) : (x_i, y_i) \in E_{\lambda}\}$ has dimension 3. Fixing abscissas gives a curve in S.

Eabrizio Barroero

Our space $S = \{(x_1, y_1, x_2, y_2, \lambda) : (x_i, y_i) \in E_{\lambda}\}$ has dimension 3. Fixing abscissas gives a curve in S. Fixing the finite order of the two points gives a curve.

Our space $S = \{(x_1, y_1, x_2, y_2, \lambda) : (x_i, y_i) \in E_{\lambda}\}$ has dimension 3. Fixing abscissas gives a curve in S.

Fixing the finite order of the two points gives a curve.

We are intersecting a curve with a countable union of curves in a space of dimension 3: Unlikely Intersections!

Consider

$$P_3(\lambda) = \left(5, \sqrt{20(5-\lambda)}\right).$$

Fabrizio Barroero

Scuola Normale Superiore

æ

ъ

・ロト ・日下・ ・ ヨト

Consider

$$P_3(\lambda) = \left(5, \sqrt{20(5-\lambda)}\right).$$

The points $P_1(\lambda)$, $P_2(\lambda)$ and $P_3(\lambda)$ are still generically independent

Fabrizio Barroero

Scuola Normale Superiore

< □ > < A >

Consider

$$P_3(\lambda) = \left(5, \sqrt{20(5-\lambda)}\right).$$

The points $P_1(\lambda)$, $P_2(\lambda)$ and $P_3(\lambda)$ are still generically independent and

$$\left\{\lambda_0\in\mathbb{C}:\exists a\in\mathbb{Z}^3\setminus\{0\}:a_1P_1(\lambda_0)+a_2P_2(\lambda_0)+a_3P_3(\lambda_0)=O\right\}$$

is an infinite set of bounded height.

Theorem

There are at most finitely many λ_0 such that $P_1(\lambda_0)$, $P_2(\lambda_0)$ and $P_3(\lambda_0)$ satisfy two independent relations on E_{λ_0} .

Fabrizio Barroero

< □ > < 同 >

Theorem

There are at most finitely many λ_0 such that $P_1(\lambda_0)$, $P_2(\lambda_0)$ and $P_3(\lambda_0)$ satisfy two independent relations on E_{λ_0} .

We were able to substitute 2, 3, 5 with pairwise distinct algebraic abscissas, and consider arbitrary many points

Fabrizio Barroero

Theorem (B., Capuano)

Let $C \subseteq \mathbb{A}^{2n+1}$ be an irreducible curve defined over $\overline{\mathbb{Q}}$ with coordinate functions $(x_1, y_1, \ldots, x_n, y_n, \lambda)$, λ non-constant, such that, for every $j = 1, \ldots, n$, the points $P_j = (x_j, y_j)$ lie on E_{λ} and there are no integers $a_1, \ldots, a_n \in \mathbb{Z}$, not all zero, such that

$$a_1P_1+\cdots+a_nP_n=O,$$

identically on C. Then there are at most finitely many $\underline{c} \in C$ such that the points $P_1(\underline{c}), \ldots, P_n(\underline{c})$ satisfy two independent relations on $E_{\lambda(\underline{c})}$.

Fabrizio Barroero

Scuola Normale Superiore

Our space $S = \{(x_1, y_1, \dots, x_n, y_n, \lambda) : (x_i, y_i) \in E_{\lambda}\}$ has dimension n + 1.

Fabrizio Barroero

Our space $S = \{(x_1, y_1, \dots, x_n, y_n, \lambda) : (x_i, y_i) \in E_{\lambda}\}$ has dimension n + 1.

We have a curve C in S.

Fabrizio Barroero

Scuola Normale Superiore

Our space $S = \{(x_1, y_1, \dots, x_n, y_n, \lambda) : (x_i, y_i) \in E_{\lambda}\}$ has dimension n + 1.

We have a curve C in S.

Fixing two independent relations gives something of dimension n-1.

Our space $S = \{(x_1, y_1, \dots, x_n, y_n, \lambda) : (x_i, y_i) \in E_{\lambda}\}$ has dimension n + 1.

We have a curve C in S.

Fixing two independent relations gives something of dimension n-1.

We are intersecting a curve with a countable union of n - 1-folds in a space of dimension n + 1: Unlikely Intersections!

The Zilber-Pink Conjecture

Conjecture

Let \mathcal{A} be an abelian scheme over a variety defined over \mathbb{C} , and denote by $\mathcal{A}^{[c]}$ the union of its abelian subschemes of codimension at least c. Let \mathcal{V} be an irreducible closed subvariety of \mathcal{A} . Then $\mathcal{V} \cap \mathcal{A}^{[1+\dim \mathcal{V}]}$ is contained in a finite union of abelian subschemes of \mathcal{A} of positive codimension.

Theorem

Let \mathcal{A} be an abelian scheme over a variety defined over $\overline{\mathbb{Q}}$ and suppose that \mathcal{A} is isogenous to the fiber product of n isogenous elliptic schemes. Let \mathcal{V} be an irreducible closed curve in \mathcal{A} . Then $\mathcal{V} \cap \mathcal{A}^{[2]}$ is contained in a finite union of abelian subschemes of \mathcal{A} of positive codimension.

Fabrizio Barroero