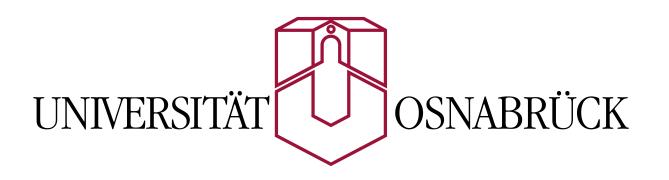
Sheaf Cohomology on Binoid Schemes

Davide Alberelli dalberelli@uos.de

Welcome Home Workshop 2014 Torino, 22 Dicembre 2014



Monoid M = (M, +, 0)

Monoid Algebra R[M]

$$M \longrightarrow R[M]$$
$$0 \longmapsto 1$$
$$a \longmapsto T^{a}$$

and

$$T^a * T^b := T^{a+b}$$

Monoid M = (M, +, 0)

Monoid Algebra R[M]

$$M \longrightarrow R[M]$$
$$0 \longmapsto 1$$
$$a \longmapsto T^{a}$$

and

$$T^a * T^b := T^{a+b}$$

We can study Algebras from the combinatorics of Monoids Toric Geometry, Tropical Geometry, Mirror Symetry,

> Cannot represent 0-divisors Cannot quotient out ideals of monoids

Monoid M = (M, +, 0)Binoid $B = (B, +, 0, \infty)$ Monoid Algebra R[M]

Binoid Algebra R[B]

If N = (B, +, 0) then

$$R[B] := \frac{R[N]}{T^{\infty}}$$

Monoid M = (M, +, 0)Binoid $B = (B, +, 0, \infty)$ Monoid Algebra R[M]

Binoid Algebra R[B]

If N = (B, +, 0) then

$$R[B] := {R[N]}_{T^{\infty}}$$

We can have 0-divisors

$$a + b = \infty \implies T^a * T^b = 0$$

and we can try to describe combinatorially the algebraic properties of more algebras.

What algebras?

Monoid M = (M, +, 0)Binoid $B = (B, +, 0, \infty)$ Monoid Algebra R[M]

Binoid Algebra R[B]

If N = (B, +, 0) then

$$R[B] := {R[N]}_{T^{\infty}}$$

We can have 0-divisors

$$a + b = \infty \implies T^a * T^b = 0$$

and we can try to describe combinatorially the algebraic properties of more algebras.

Theorem (Eisenbud, Sturmfels 1996). All and only the varieties closed under component-wise multiplication are binoidal varieties.

 $B_{\bullet} := B \smallsetminus \{\infty\}$ If it is a monoid, we say that B is integral

 $B_{\bullet} := B \smallsetminus \{\infty\}$ If it is a monoid, we say that B is integral

Ex: $M \mod (M \cup \{\infty\}, +, 0, \infty)$ integral

 $(\mathbb{N} \cup \{\infty\}, +, 0, \infty)$

We should recover monoid theory from the one of integral binoids

 $B_{\bullet} := B \smallsetminus \{\infty\}$ If it is a monoid, we say that B is integral

Ex:
$$M \mod \Rightarrow (M \cup \{\infty\}, +, 0, \infty)$$
 integral

$$(\mathbb{N} \cup \{\infty\}, +, 0, \infty)$$

We should recover monoid theory from the one of integral binoids

$$B = (X, Y \mid X + Y = \infty) \quad \text{non integral}$$
$$\mathbb{K}[B] = \frac{\mathbb{K}[x, y]}{\langle xy \rangle} \quad \text{non integral}$$

 $B_{\bullet} := B \smallsetminus \{\infty\}$ If it is a monoid, we say that B is integral

Ex:
$$M \mod \Rightarrow (M \cup \{\infty\}, +, 0, \infty)$$
 integral

$$(\mathbb{N} \cup \{\infty\}, +, 0, \infty)$$

We should recover monoid theory from the one of integral binoids

$$B = (X, Y \mid X + Y = \infty) \text{ non integral}$$

$$\mathbb{K}[B] = \frac{\mathbb{K}[x, y]}{\langle xy \rangle} \text{ non integral}$$

$$R = \frac{\mathbb{K}[x, y]}{\langle x(x - y) \rangle} \text{ comes from}$$

$$B = (X, Y \mid 2X = X + Y) \text{ integral but non cancellative}$$

$$X \neq Y$$

${\cal M}$ monoid, ${\cal S}$ set

$M \curvearrowright S : M \times S \longrightarrow S$ $(a, s) \longmapsto a + s$ $(0, s) \longmapsto s$

M-sets

$$(a+b) + s = a + (b+s)$$

M-sets

 $\begin{array}{lll} M \text{ monoid, } S \text{ set} & M \text{ binoid, } (S,p) \text{ pointed set} \\ M \curvearrowright S : M \times S \longrightarrow S & M \curvearrowright S : M \times S \longrightarrow S \\ & (a,s) \longmapsto a + s & (a,s) \longmapsto a + s \\ & (0,s) \longmapsto s & (0,s) \longmapsto s \\ & (a+b) + s = a + (b+s) & (a,p) \longmapsto p \end{array}$

Simone Böttger, Holger Brenner Introduction of Binoids and theoric bases

Bayarjargal Batsukh, Holger Brenner Hilbert-Kunz multiplicity for M-sets

M binoid, $I\subseteq M$, I an $M\operatorname{-set}$

I ideal of M.

- $\infty \in I$
- \bullet closed under \curvearrowright

M binoid, $I\subseteq M,$ I an $M\operatorname{-set}$

I ideal of M.

- $\infty \in I$
- \bullet closed under \curvearrowright

Something we cannot do with monoids: **quotients**

Rees equiv. relation: \sim_I

$$a \sim_I b \iff a = b$$
 or $a, b \in I$

M binoid, $I\subseteq M,$ I an M-set

I ideal of M.

- $\infty \in I$
- \bullet closed under \curvearrowright

$$M_{I} := M_{I}$$

Something we cannot do with monoids: **quotients**

Rees equiv. relation: \sim_I

$$a \sim_I b \iff a = b$$
 or $a, b \in I$

Set to ∞ everything in I and leave everything else untouched.

$$M \longrightarrow M / I$$
$$b \longrightarrow \begin{cases} \infty \text{ if } b \in I \\ b \text{ else} \end{cases}$$

M binoid, $I\subseteq M,$ I an M-set

I ideal of M.

- $\infty \in I$
- \bullet closed under \curvearrowright

$$M_{I} := M_{I}$$

Something we cannot do with monoids: **quotients**

Rees equiv. relation: \sim_I

$$a \sim_I b \iff a = b$$
 or $a, b \in I$

 $\mathfrak{p} \subset M$ ideal is **prime** if $a + b \in \mathfrak{p} \Rightarrow a \in \mathfrak{p}$ or $b \in \mathfrak{p}$ Equiv. $M \smallsetminus \mathfrak{p}$ is a monoid

 $\operatorname{Spec}(M) := \{ \mathfrak{p} \subset M \mid \mathfrak{p} \text{ prime ideal} \}$

Theorem (Böttger 2014). If M is a binoid with generating subset $G \subseteq M$ then every prime ideal of M is of the form $\langle A \rangle$ for some subset $A \subseteq G$.

 $(x, y, z \mid x + y = 2z)$

Theorem (Böttger 2014). If M is a binoid with generating subset $G \subseteq M$ then every prime ideal of M is of the form $\langle A \rangle$ for some subset $A \subseteq G$.

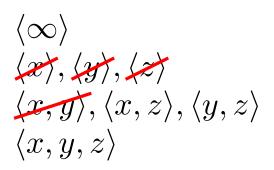
 $(x, y, z \mid x + y = 2z)$

 $egin{aligned} &\langle\infty
angle\ &\langle x
angle,\langle y
angle,\langle z
angle\ &\langle x,y
angle,\langle x,z
angle,\langle y,z
angle\ &\langle x,y,z
angle \end{aligned}$

Proposition (A. 2014). $S \subseteq G$. $I = \langle S \rangle$ is prime iff for every relation r_i between generators of M, the elements of $S \cup \{\infty\}$ are either on both sides of r_i or on none.

Theorem (Böttger 2014). If M is a binoid with generating subset $G \subseteq M$ then every prime ideal of M is of the form $\langle A \rangle$ for some subset $A \subseteq G$.

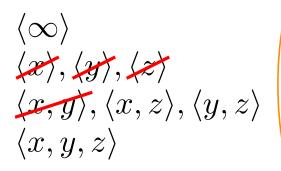
 $(x, y, z \mid x + y = 2z)$



Proposition (A. 2014). $S \subseteq G$. $I = \langle S \rangle$ is prime iff for every relation r_i between generators of M, the elements of $S \cup \{\infty\}$ are either on both sides of r_i or on none.

Theorem (Böttger 2014). If M is a binoid with generating subset $G \subseteq M$ then every prime ideal of M is of the form $\langle A \rangle$ for some subset $A \subseteq G$.

$$(x, y, z \mid x + y = 2z)$$



Proposition (A. 2014). $S \subseteq G$. $I = \langle S \rangle$ is prime iff for every relation r_i between generators of M, the elements of $S \cup \{\infty\}$ are either on both sides of r_i or on none.

Algorithm.

IN: Generators and relations between them **OUT:** List of prime ideals of M

 ${\cal I}$ ideal of ${\cal M}$

$$V(I) := \{ \mathfrak{p} \in \operatorname{Spec} M \mid I \subseteq \mathfrak{p} \}$$

topology of closed subsets (Zariski topology)

 ${\boldsymbol{I}}$ ideal of ${\boldsymbol{M}}$

$$V(I) := \{ \mathfrak{p} \in \operatorname{Spec} M \mid I \subseteq \mathfrak{p} \}$$

topology of closed subsets (Zariski topology)

 $D(I) = \{ \mathfrak{p} \in \operatorname{Spec} M \mid I \nsubseteq \mathfrak{p} \} \ \Big| \ D(f) = \{ \mathfrak{p} \in \operatorname{Spec} M \mid f \notin \mathfrak{p} \}$

 ${\cal I}$ ideal of ${\cal M}$

$$V(I) := \{ \mathfrak{p} \in \operatorname{Spec} M \mid I \subseteq \mathfrak{p} \}$$

topology of closed subsets (Zariski topology)

$$D(I) = \{ \mathfrak{p} \in \operatorname{Spec} M \mid I \nsubseteq \mathfrak{p} \} \quad D(f) = \{ \mathfrak{p} \in \operatorname{Spec} M \mid f \notin \mathfrak{p} \}$$

Т

Localization: $M \smallsetminus \mathfrak{p}$ monoid \Rightarrow we can invert elements

$$M_{\mathfrak{p}} := -(M \smallsetminus \mathfrak{p}) + M_{\nearrow_{\mathrm{loc}}}$$
$$= \{a - m \mid a \in M, m \in M \smallsetminus \mathfrak{p}\}_{\swarrow_{\mathrm{loc}}}$$

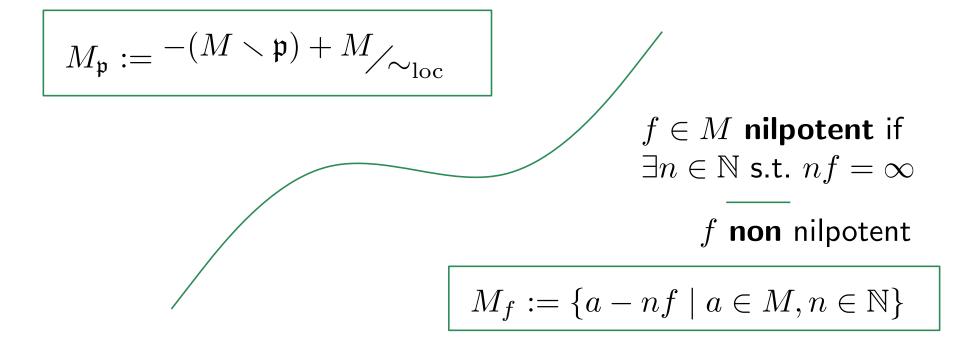
I ideal of M

$$V(I) := \{ \mathfrak{p} \in \operatorname{Spec} M \mid I \subseteq \mathfrak{p} \}$$

topology of closed subsets (Zariski topology)

$$D(I) = \{ \mathfrak{p} \in \operatorname{Spec} M \mid I \nsubseteq \mathfrak{p} \} \quad D(f) = \{ \mathfrak{p} \in \operatorname{Spec} M \mid f \notin \mathfrak{p} \}$$

Localization: $M \smallsetminus \mathfrak{p}$ monoid \Rightarrow we can invert elements



Structural Sheaf

Presheaf defined on the basis of fundamental open subsets

 $\operatorname{Top}(\operatorname{Spec} M) \longrightarrow \operatorname{Bin} D(f) \longmapsto M_f$

Its sheafification is the structural sheaf, $\ensuremath{\mathcal{O}}$

Structural Sheaf

Presheaf defined on the basis of fundamental open subsets

 $\operatorname{Top}(\operatorname{Spec} M) \longrightarrow \operatorname{Bin} D(f) \longmapsto M_f$

Its sheafification is the structural sheaf, $\ensuremath{\mathcal{O}}$

$(\operatorname{Spec}(M), \mathcal{O}_{\operatorname{Spec} M})$ is an affine binoid scheme.

If X is a topological space, \mathcal{O}_X is a sheaf of binoids on X and (X, \mathcal{O}_X) is locally isomorphic to affine binoid schemes, then (X, \mathcal{O}_X) is a **binoid scheme**.

Structural Sheaf

Presheaf defined on the basis of fundamental open subsets

 $\operatorname{Top}(\operatorname{Spec} M) \longrightarrow \operatorname{Bin} D(f) \longmapsto M_f$

Its sheafification is the structural sheaf, $\ensuremath{\mathcal{O}}$

$(\operatorname{Spec}(M), \mathcal{O}_{\operatorname{Spec} M})$ is an affine binoid scheme.

If X is a topological space, \mathcal{O}_X is a sheaf of binoids on X and (X, \mathcal{O}_X) is locally isomorphic to affine binoid schemes, then (X, \mathcal{O}_X) is a **binoid scheme**.

The category of binoid schemes has finite products and coproducts.

TODO: Dive into Categorial properties

Simplicial complices

Let $V = \{1, ..., n\}$. An abstract simplicial complex is $\triangle \subseteq \mathcal{P}(V)$ closed under subsets, i.e. $F \in \triangle, G \subseteq F \Rightarrow G \in \triangle$ $F \in \triangle$ is a face

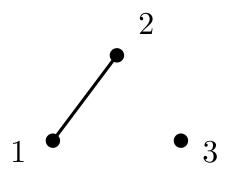
 $F \in \triangle$ maximal w.r.t. \subset is a facet

Simplicial complices

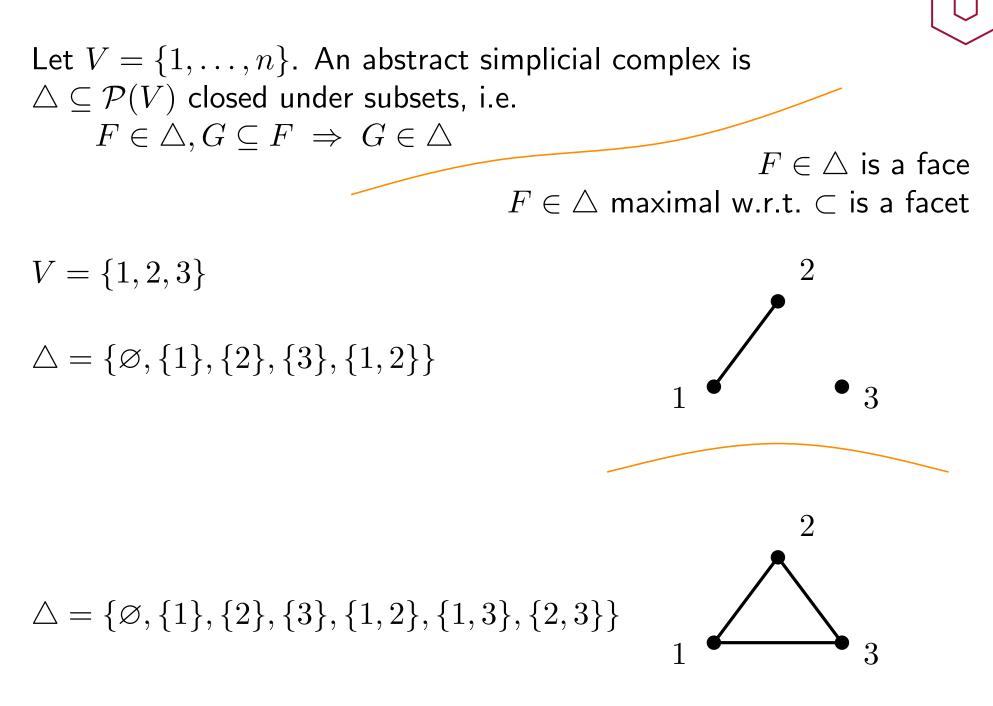
Let $V = \{1, \ldots, n\}$. An abstract simplicial complex is $\triangle \subseteq \mathcal{P}(V)$ closed under subsets, i.e. $F \in \triangle, G \subseteq F \Rightarrow G \in \triangle$ $F \in \triangle$ is a face $F \in \triangle$ maximal w.r.t. \subset is a facet

 $V = \{1, 2, 3\}$

 $\triangle = \{ \varnothing, \{1\}, \{2\}, \{3\}, \{1,2\} \}$



Simplicial complices



 \triangle simplicial complex on $V = 1, \ldots, n$ M_{\triangle} generated by x_1, \ldots, x_n with relations given by the minimal non-faces of \triangle

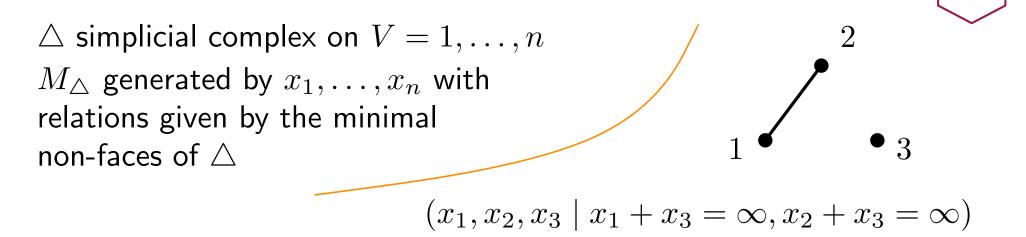
 $\mathbf{2}$

3

 \triangle simplicial complex on $V = 1, \ldots, n$ M_{\triangle} generated by x_1, \ldots, x_n with relations given by the minimal non-faces of \triangle

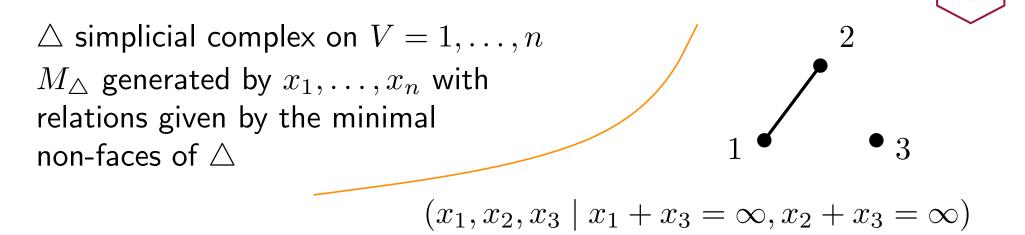
 $(x_1, x_2, x_3 \mid x_1 + x_3 = \infty, x_2 + x_3 = \infty)$

 M_{\triangle} is a simplicial binoid



 M_{\triangle} is a simplicial binoid

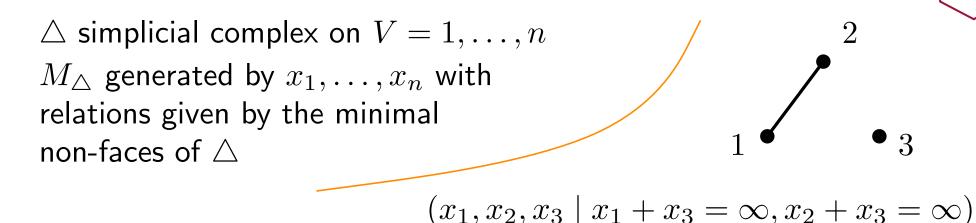
 \triangle is (n-1)-simplex iff M_{\triangle} is integral



 M_{\triangle} is a simplicial binoid

 \triangle is (n-1)-simplex iff M_{\triangle} is integral

 $R[M_{\triangle}]$ is Stanley-Reisner algebra of \triangle

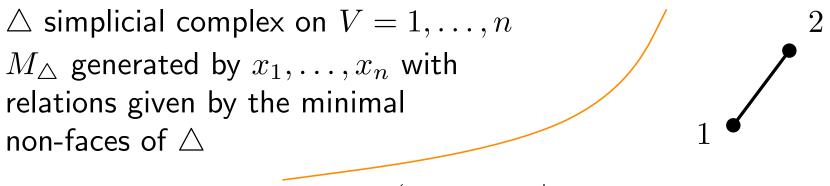


 M_{\triangle} is a simplicial binoid

 \triangle is (n-1)-simplex iff M_{\triangle} is integral

 $R[M_{\triangle}]$ is Stanley-Reisner algebra of \triangle

Combinatorial description of $\operatorname{Spec} \bigtriangleup := \operatorname{Spec} M_{\bigtriangleup}$ from complement of facets



 $(x_1, x_2, x_3 \mid x_1 + x_3 = \infty, x_2 + x_3 = \infty)$

3

 M_{\triangle} is a simplicial binoid

 \triangle is (n-1)-simplex iff M_{\triangle} is integral

 $R[M_{\triangle}]$ is Stanley-Reisner algebra of \triangle

 $\begin{aligned} \operatorname{Spec}(\triangle) &= \overline{\{\{3\},\{1,2\}\}}_{\subset} & \operatorname{Spec}(\triangle) &= \operatorname{Spec}(\triangle) \\ &= \{\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} & \text{from complement} \\ & \text{of facets} \end{aligned}$

 $M_{\bigtriangleup_{x_i}}$ localization at a vertex

Invert x_i

 $M_{\triangle_{x_i}}$ localization at a vertex

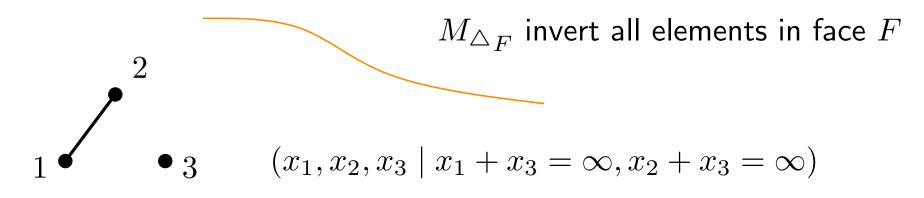
Invert x_i

We can localize many times until we reach a non-face

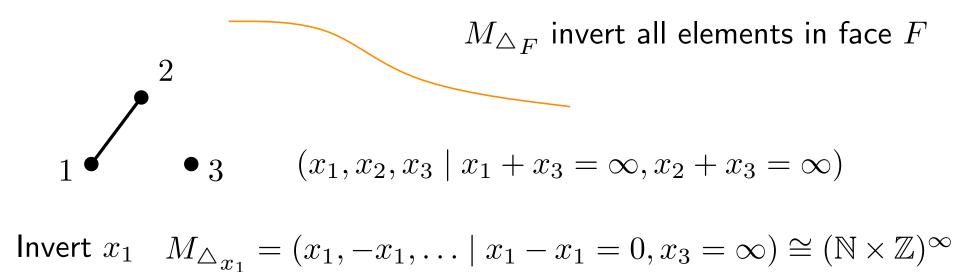
 M_{\triangle_F} invert all elements in face F

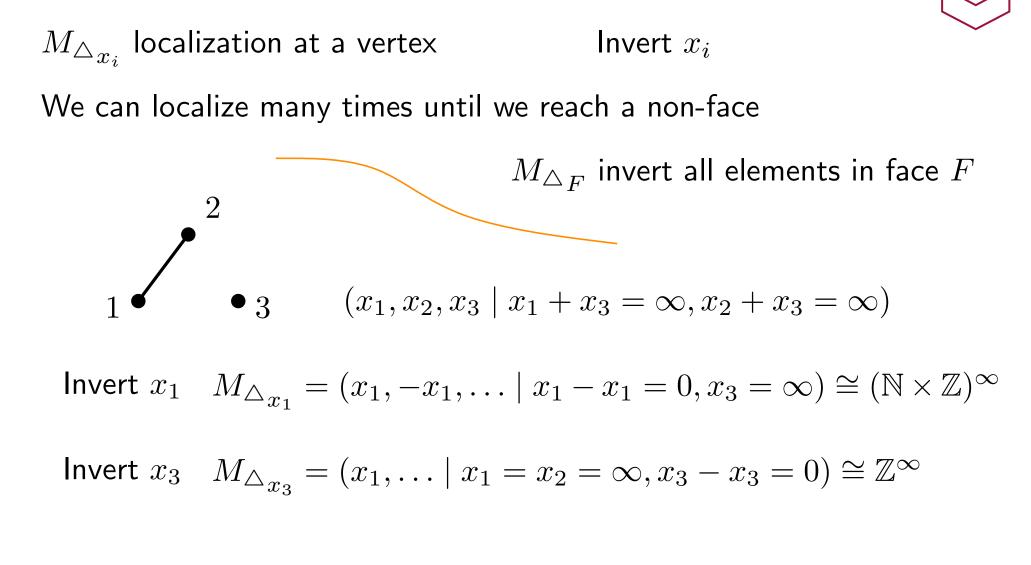
 $M_{\triangle_{x_i}}$ localization at a vertex Invert x_i

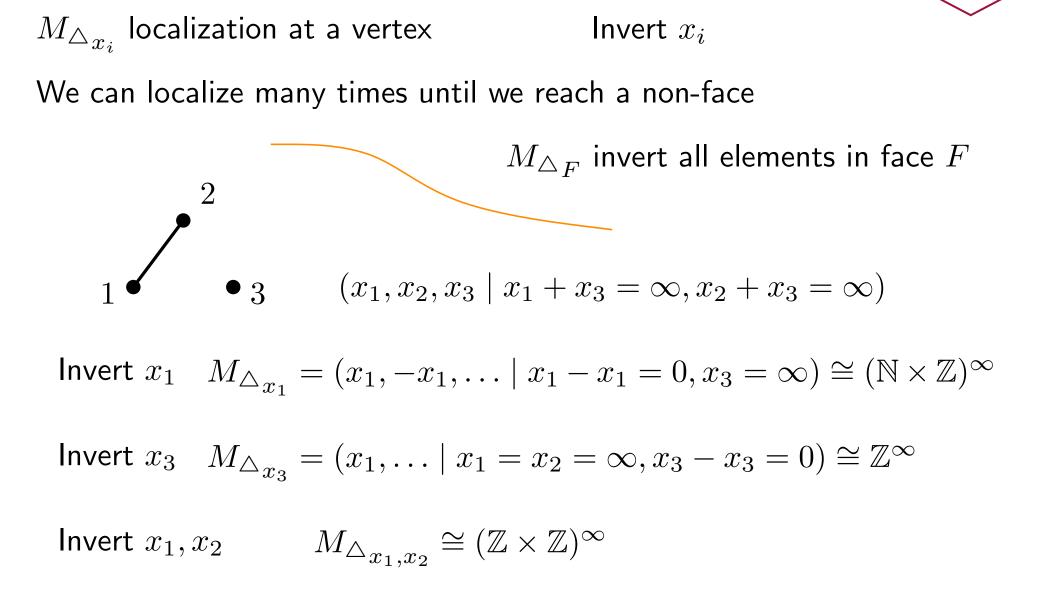
We can localize many times until we reach a non-face

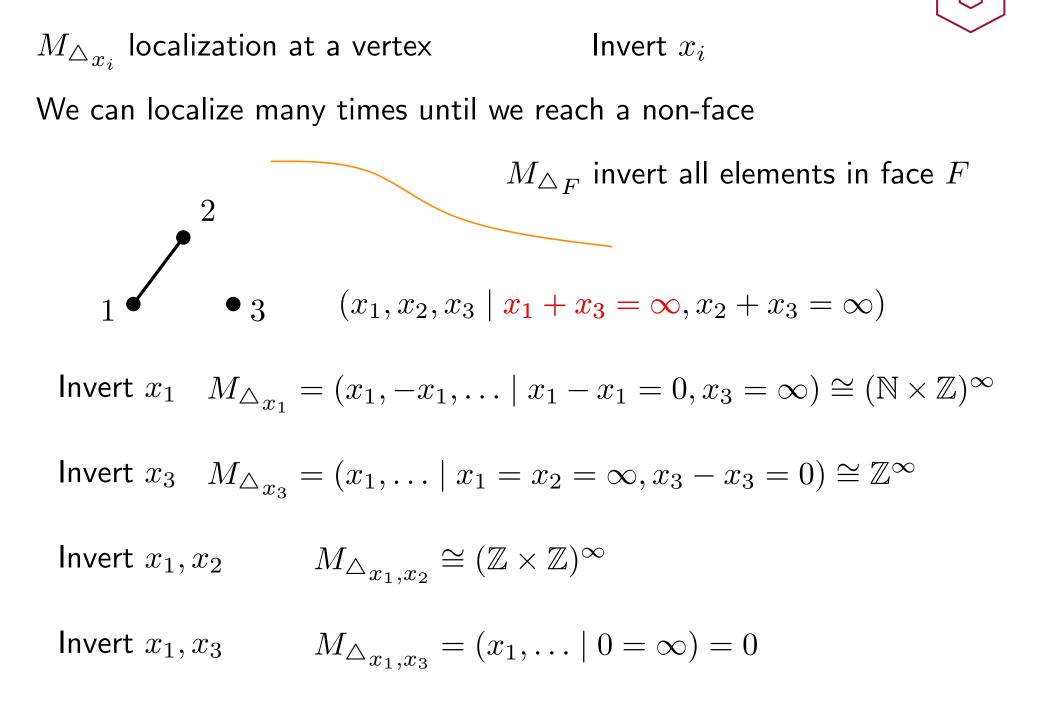


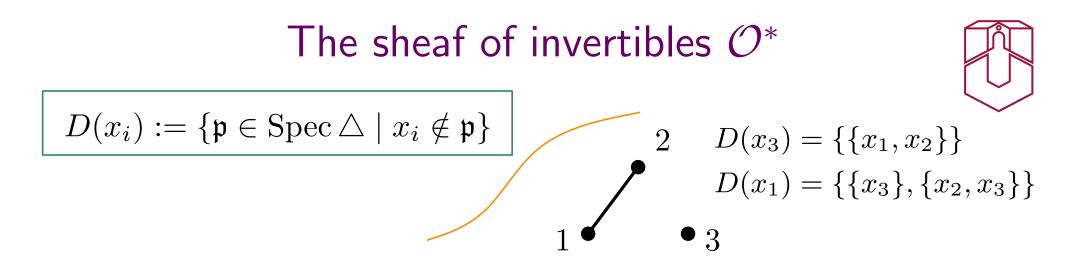
 $M_{\triangle_{x_i}}$ localization at a vertex Invert x_i We can localize many times until we reach a non-face

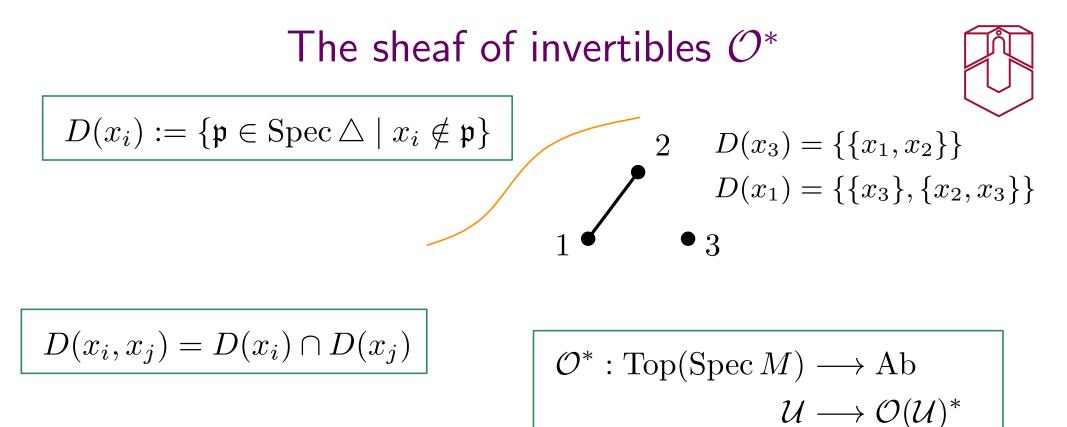


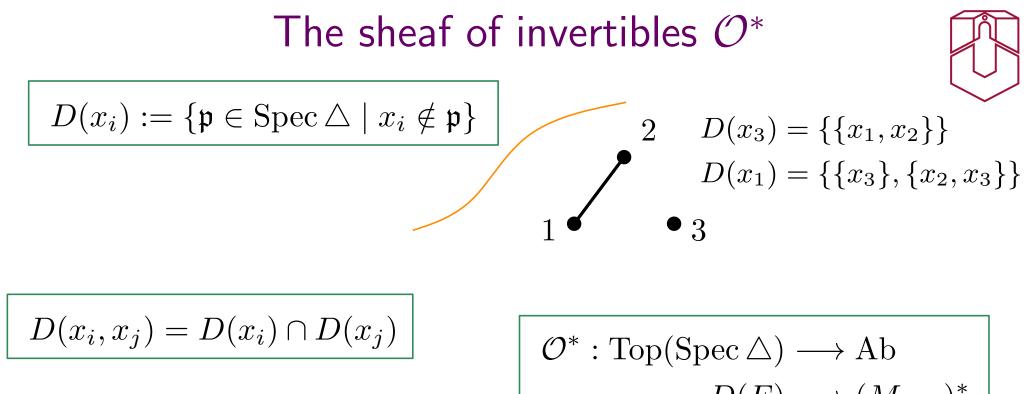




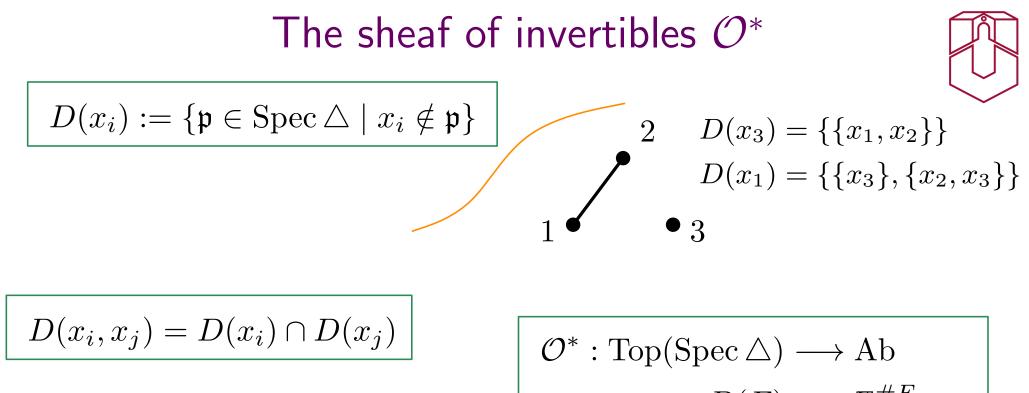




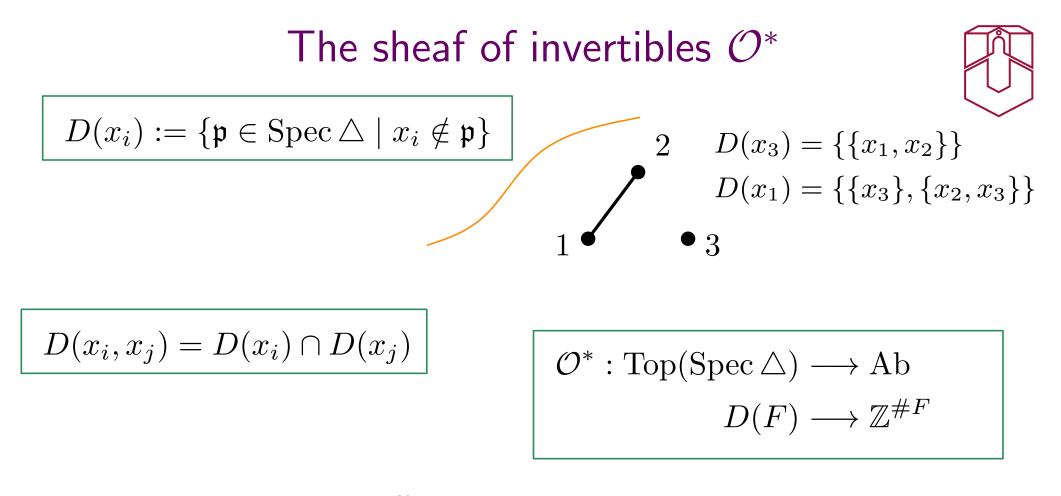




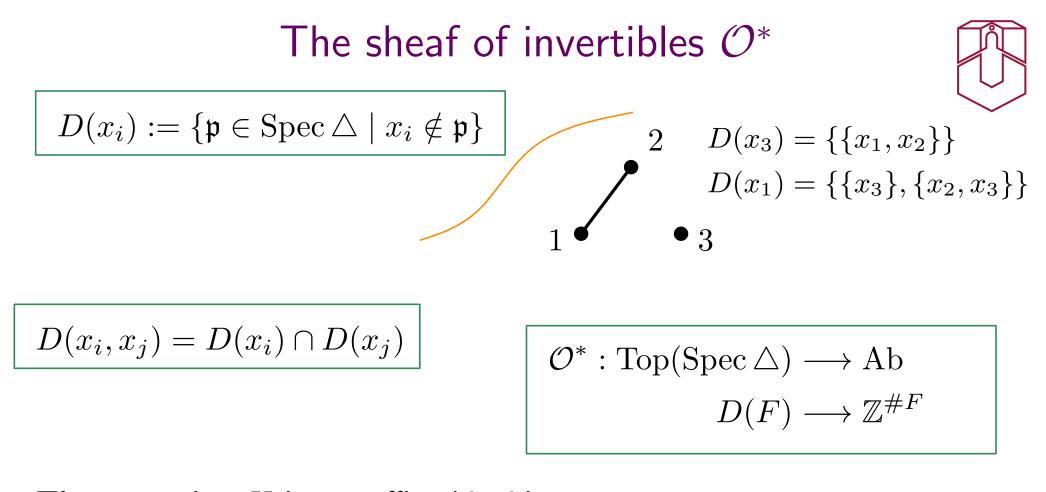
$$D(F) \longrightarrow (M_{\triangle F})$$



$$D(F) \longrightarrow \mathbb{Z}^{\#F}$$



Theorem. Let X be an affine binoid scheme and \mathcal{F} a sheaf of abelian groups on X. Then $\mathrm{H}^{n}(X,\mathcal{F}) = 0, \quad \forall n \geq 1$



Theorem. Let X be an affine binoid scheme and \mathcal{F} a sheaf of abelian groups on X. Then $\mathrm{H}^{n}(X,\mathcal{F}) = 0, \quad \forall n \geq 1$

Theorem (I. Pirashvili 2014). For X of finite type, Čech Cohomology is Sheaf Cohomology

A vector bundle on a binoid scheme X is a sheaf \mathcal{V} together with an action of \mathcal{O}_X s.t. it is locally isomorphic to $\mathcal{O}_X^{\wedge n}$

A vector bundle on a binoid scheme X is a sheaf \mathcal{V} together with an action of \mathcal{O}_X s.t. it is locally isomorphic to $\mathcal{O}_X^{\wedge n}$

 $\operatorname{Vect}_n(X)$ is the set of isomorphim classes of v.b. on X of rank n $\operatorname{Pic}(X) := \operatorname{Vect}_1(X)$ line bundles. Group w/ the smash product of \mathcal{O}_X -sets.

A vector bundle on a binoid scheme X is a sheaf \mathcal{V} together with an action of \mathcal{O}_X s.t. it is locally isomorphic to $\mathcal{O}_X^{\wedge n}$

 $\operatorname{Vect}_n(X)$ is the set of isomorphim classes of v.b. on X of rank n $\operatorname{Pic}(X) := \operatorname{Vect}_1(X)$ line bundles. Group w/ the smash product of \mathcal{O}_X -sets.

Theorem (I. Pirashvili 2014).

- $\operatorname{Vect}_n(X) \xleftarrow{1:1} \operatorname{H}^1(X, \operatorname{GL}_n(\mathcal{O}_X))$
- $\operatorname{Pic}(X) \cong \operatorname{H}^1(X, \mathcal{O}_X^*)$

A vector bundle on a binoid scheme X is a sheaf \mathcal{V} together with an action of \mathcal{O}_X s.t. it is locally isomorphic to $\mathcal{O}_X^{\wedge n}$

 $\operatorname{Vect}_n(X)$ is the set of isomorphim classes of v.b. on X of rank n $\operatorname{Pic}(X) := \operatorname{Vect}_1(X)$ line bundles. Group w/ the smash product of \mathcal{O}_X -sets.

Theorem (I. Pirashvili 2014).

- $\operatorname{Vect}_n(X) \xleftarrow{1:1} \operatorname{H}^1(X, \operatorname{GL}_n(\mathcal{O}_X))$
- $\operatorname{Pic}(X) \cong \operatorname{H}^1(X, \mathcal{O}_X^*)$

We call Čech-Picard complex the Čech complex of the sheaf of invertibles $\check{C}^{\bullet}(X, \mathcal{O}^*)$

Since in the affine case everything vanishes, we puncture the spectrum by removing the (unique) maximal ideal $M_+ := M \smallsetminus M^*$

 $\operatorname{Spec}^{\circ} M := \operatorname{Spec} M \setminus \{M_+\}$

 $\{M_+\}$ is the only closed point

Since in the affine case everything vanishes, we puncture the spectrum by removing the (unique) maximal ideal $M_+ := M \smallsetminus M^*$

$$\operatorname{Spec}^{\circ} M := \operatorname{Spec} M \setminus \{M_+\}$$

The punctured specturm is quasi-affine and covered by the $D(x_i)$'s, where x_i 's are the generators of the maximal ideal M_+

Since in the affine case everything vanishes, we puncture the spectrum by removing the (unique) maximal ideal $M_+ := M \smallsetminus M^*$

$$\operatorname{Spec}^{\circ} M := \operatorname{Spec} M \setminus \{M_+\}$$

The punctured specturm is quasi-affine and covered by the $D(x_i)$'s, where x_i 's are the generators of the maximal ideal M_+

We are interested in the local Picard group

$$\operatorname{Pic}^{\operatorname{loc}} M := \operatorname{Pic}(\operatorname{Spec}^{\circ} M)$$

Since in the affine case everything vanishes, we puncture the spectrum by removing the (unique) maximal ideal $M_+ := M \smallsetminus M^*$

$$\operatorname{Spec}^{\circ} M := \operatorname{Spec} M \setminus \{M_+\}$$

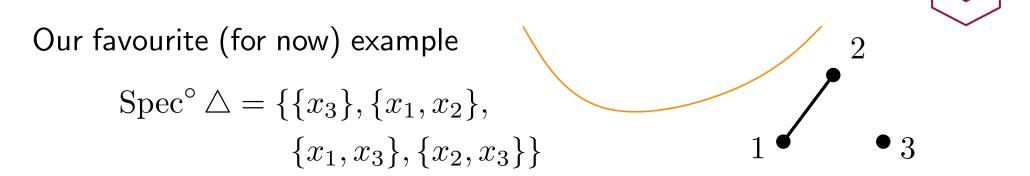
The punctured specturm is quasi-affine and covered by the $D(x_i)$'s, where x_i 's are the generators of the maximal ideal M_+

We are interested in the local Picard group

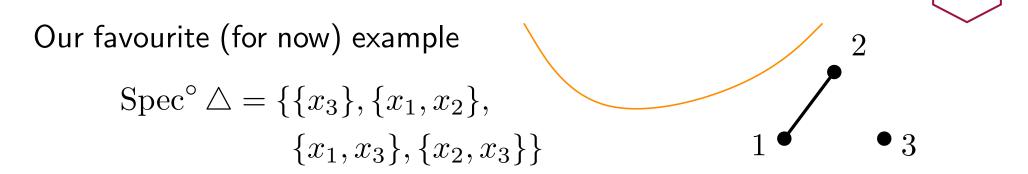
$$\operatorname{Pic}^{\operatorname{loc}} M := \operatorname{Pic}(\operatorname{Spec}^{\circ} M)$$

Computed through the Čech-Picard complex on the covering given by the $D(x_i)$'s and intersections given by

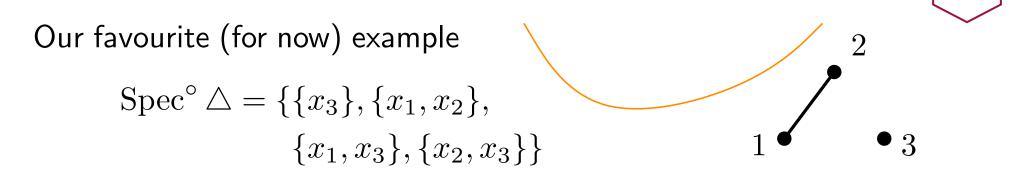
$$D(x_{i_1},\ldots,x_{i_k})=D(x_{i_1})\cap\cdots\cap D(x_{i_k})$$



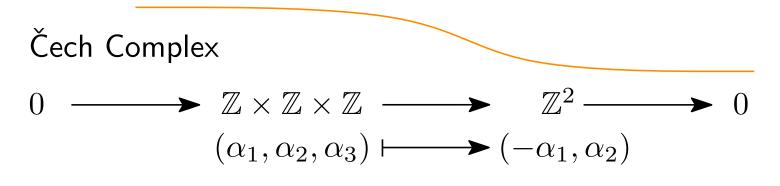
Covered by $D(x_1) = \{\{x_3\}, \{x_2, x_3\}\}$ $D(x_2) = \{\{x_3\}, \{x_1, x_3\}\}$ $D(x_3) = \{\{x_1, x_2\}\}$

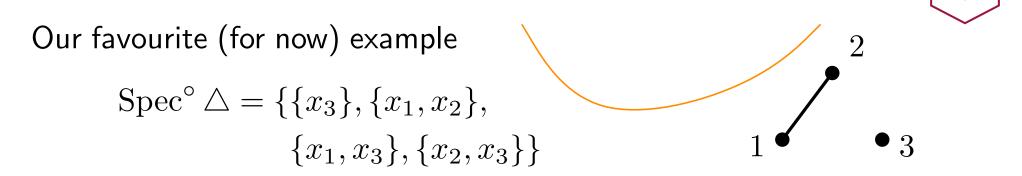


Covered by $D(x_1) = \{\{x_3\}, \{x_2, x_3\}\}$ $D(x_2) = \{\{x_3\}, \{x_1, x_3\}\}$ $D(x_3) = \{\{x_1, x_2\}\}$ Local invertibles $(M_{x_1})^* = \mathbb{Z}$ $(M_{x_2})^* = \mathbb{Z}$ $(M_{x_3})^* = \mathbb{Z}$

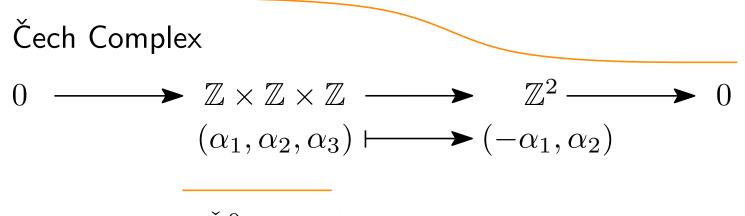


Covered by $D(x_1) = \{\{x_3\}, \{x_2, x_3\}\}$ $D(x_2) = \{\{x_3\}, \{x_1, x_3\}\}$ $D(x_3) = \{\{x_1, x_2\}\}$ Local invertibles $(M_{x_1})^* = \mathbb{Z}$ $(M_{x_2})^* = \mathbb{Z}$ $(M_{x_3})^* = \mathbb{Z}$





Covered by $D(x_1) = \{\{x_3\}, \{x_2, x_3\}\}$ $D(x_2) = \{\{x_3\}, \{x_1, x_3\}\}$ $D(x_3) = \{\{x_1, x_2\}\}$ Local invertibles $(M_{x_1})^* = \mathbb{Z}$ $(M_{x_2})^* = \mathbb{Z}$ $(M_{x_3})^* = \mathbb{Z}$



 $\check{\mathrm{H}}^{0}(\triangle,\mathcal{O}^{*}) = \mathbb{Z}$

Our new favourite example: $x_1 + x_2 + x_3 = \infty$

Spec[°]
$$\triangle = \{\{x_1\}, \{x_2\}, \{x_3\}$$

 $\{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}\}$ 1

 $\mathbf{2}$

3

Covered by

$$D(x_1) = \{\{x_2\}, \{x_3\}, \{x_2, x_3\}\}\$$
$$D(x_2) = \{\{x_1\}, \{x_3\}, \{x_1, x_3\}\}\$$
$$D(x_3) = \{\{x_1\}, \{x_2\}, \{x_1, x_2\}\}\$$

Our new favourite example: $x_1 + x_2 + x_3 = \infty$ $Spec^{\circ} \bigtriangleup = \{\{x_1\}, \{x_2\}, \{x_3\} \\ \{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}\}$ 1



Covered by

 $D(x_1) = \{\{x_2\}, \{x_3\}, \{x_2, x_3\}\}\$ $D(x_2) = \{\{x_1\}, \{x_3\}, \{x_1, x_3\}\}\$ $D(x_3) = \{\{x_1\}, \{x_2\}, \{x_1, x_2\}\}\$

Local invertibles $(M_{x_i})^* = \mathbb{Z}$

 $(M_{x_i, x_j})^* = \mathbb{Z}^2$
for $1 \le i < j \le 3$

Our new favourite example: $x_1 + x_2 + x_3 = \infty$ Spec° $\triangle = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}\}$

Covered by $D(x_1) = \{\{x_2\}, \{x_3\}, \{x_2, x_3\}\}$ $D(x_2) = \{\{x_1\}, \{x_3\}, \{x_1, x_3\}\}$ $D(x_3) = \{\{x_1\}, \{x_2\}, \{x_1, x_2\}\}$ Local invertibles $(M_{x_i})^* = \mathbb{Z}$

 $(M_{x_i, x_j})^* = \mathbb{Z}^2$
for $1 \le i < j \le 3$

2

3

Our new favourite example: $x_1 + x_2 + x_3 = \infty$ $Spec^{\circ} \triangle = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_1, x_3\}, \{x_2, x_3\}\}$ $\{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}\}$

Covered by $D(x_1) = \{\{x_2\}, \{x_3\}, \{x_2, x_3\}\}$ $D(x_2) = \{\{x_1\}, \{x_3\}, \{x_1, x_3\}\}$ $D(x_3) = \{\{x_1\}, \{x_2\}, \{x_1, x_2\}\}$ Local invertibles $(M_{x_i})^* = \mathbb{Z}$

 $(M_{x_i, x_j})^* = \mathbb{Z}^2$
for $1 \le i < j \le 3$

2

3

 $\check{\mathrm{H}}^{0}(\triangle, \mathcal{O}^{*}) = 0 \qquad \qquad \check{\mathrm{H}}^{1}(\triangle, \mathcal{O}^{*}) = \mathbb{Z}^{3}$

We have an explicit description of $\operatorname{Pic}(X)$ in our new favourite case

A line bundle V is locally $V_{x_i} \cong M_{x_i} \cong \langle e_i \rangle$

We have an explicit description of $\operatorname{Pic}(X)$ in our new favourite case

On the intersection $D(x_i, x_j)$ we have

$$e_i = e_j + b_{ij}$$
$$e_j = e_i + b_{ji}$$

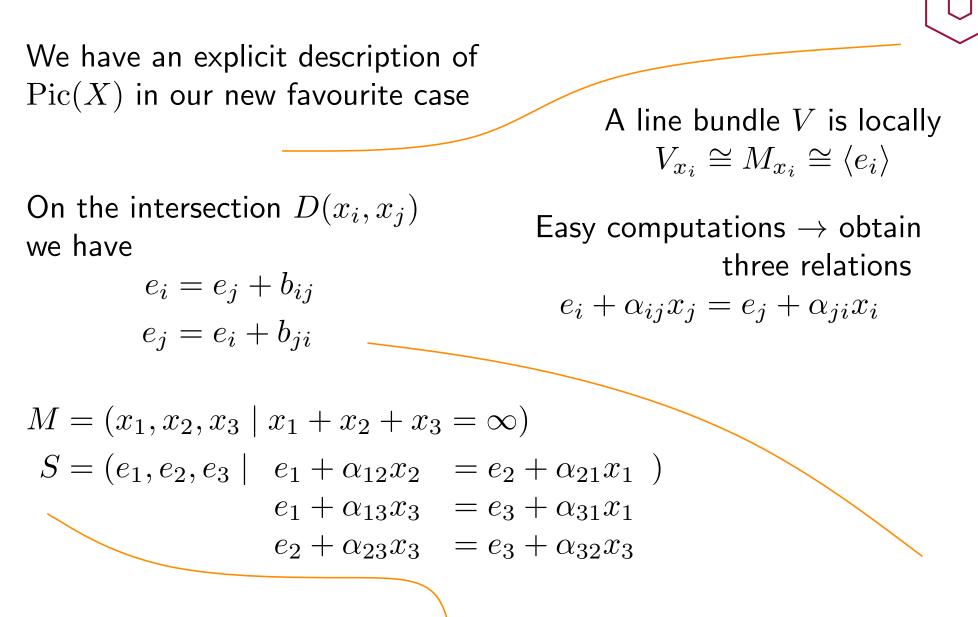
A line bundle V is locally $V_{x_i} \cong M_{x_i} \cong \langle e_i \rangle$

 $\begin{array}{l} {\sf Easy\ computations\ } \to \ obtain \\ {\sf three\ relations\ } \end{array}$

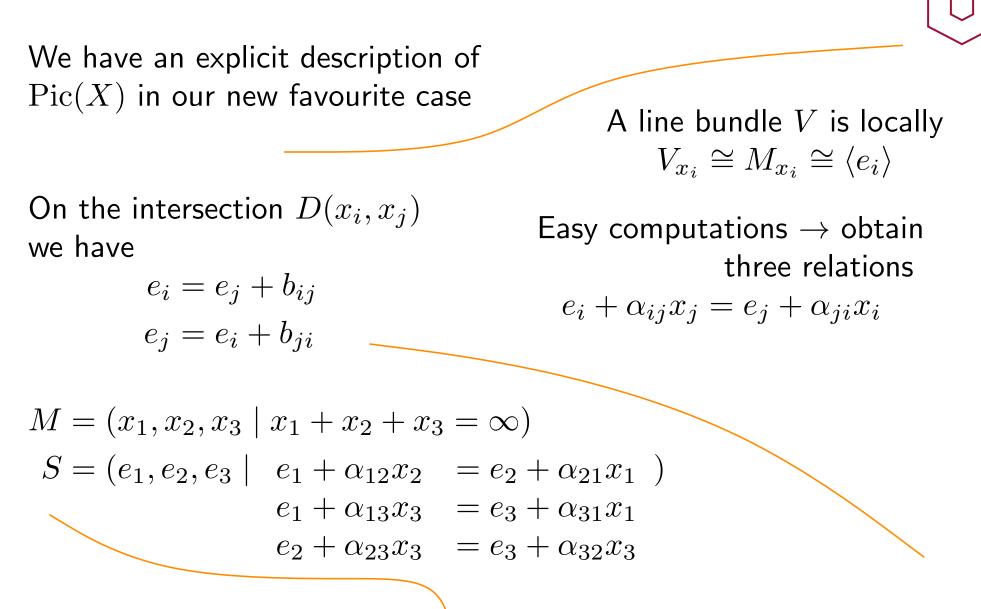
 $e_1 + \alpha_{12}x_2 = e_2 + \alpha_{21}x_1$

$$e_1 + \alpha_{13}x_3 = e_3 + \alpha_{31}x_1$$

$$e_2 + \alpha_{23}x_3 = e_3 + \alpha_{32}x_3$$



Up to isomorphism this 6 parameters α_{ij} give us \mathbb{Z}^3 possibilities.



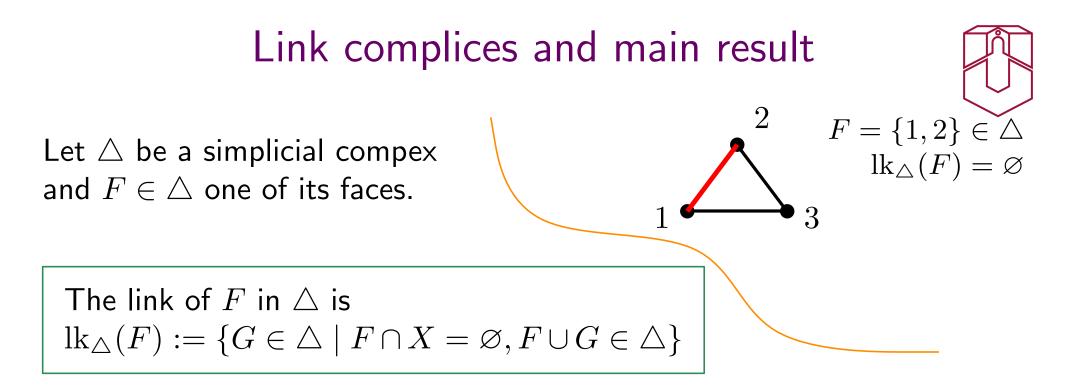
They are the all and only such M-sets. Group with \wedge_M .

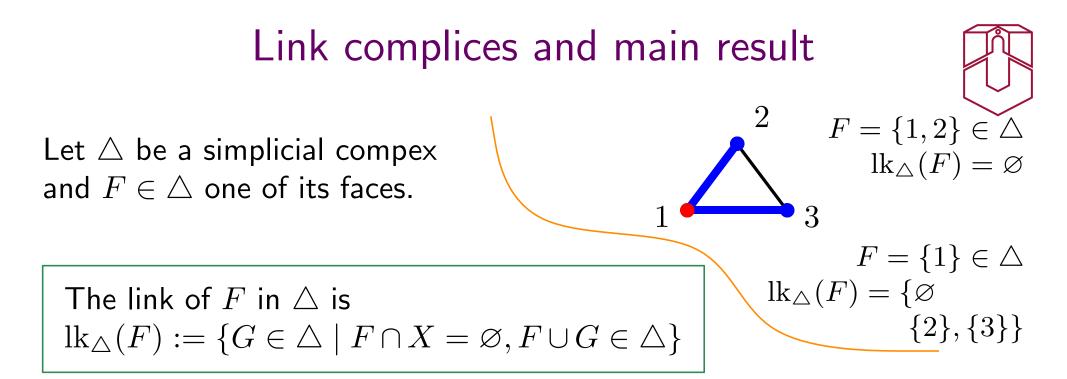
Up to isomorphism this 6 parameters α_{ij} give us \mathbb{Z}^3 possibilities.

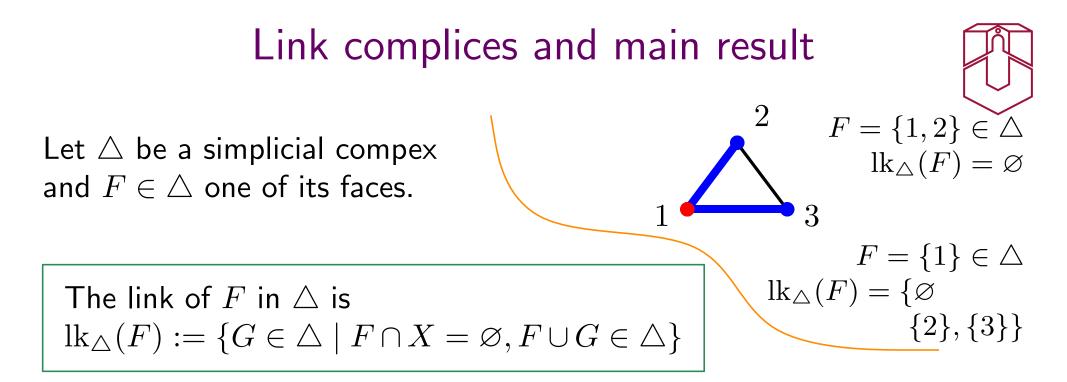
Link complices and main result

Let \triangle be a simplicial compex and $F \in \triangle$ one of its faces.

The link of F in \triangle is $lk_{\triangle}(F) := \{G \in \triangle \mid F \cap X = \emptyset, F \cup G \in \triangle\}$







Theorem (A. 2014). The cohomology of the local Čech-Picard complex of \triangle can be computed with the following formulas $\mathrm{H}^{0}(\triangle, \mathcal{O}^{*}) = \mathbb{Z}^{\#\{0-\dim \text{ facets of } \triangle\}}$ $\mathrm{H}^{1}(\triangle, \mathcal{O}^{*}) = \mathbb{Z}^{(\sum r_{v_{i}})-\#\{0-\dim \text{ non-facets of } \triangle\}}$ $\mathrm{H}^{j}(\triangle, \mathcal{O}^{*}) = \bigoplus_{v_{i} \in V} \mathrm{H}^{j-1}(\mathcal{C}^{\bullet}_{\mathrm{lk}_{\triangle}(v_{i})}) \qquad \bullet \ \mathcal{C}^{\bullet}_{\mathrm{lk}_{\triangle}(v_{i})} \coloneqq \mathcal{C}^{\bullet}(\mathrm{lk}_{\triangle}(v_{i}), \mathbb{Z})$ $\bullet \ r_{v_{i}} = \mathrm{rk}(\mathrm{H}^{0}(\mathcal{C}^{\bullet}_{\mathrm{lk}_{\triangle}(v_{i})}))$

• $j \ge 2$

 ${\rm H}^0$ and ${\rm H}^1$ are always free groups in the simplicial case

TRUE

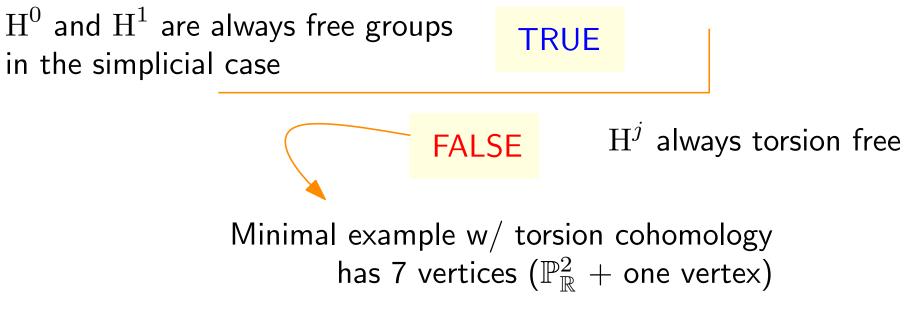
 ${\rm H}^0$ and ${\rm H}^1$ are always free groups in the simplicial case

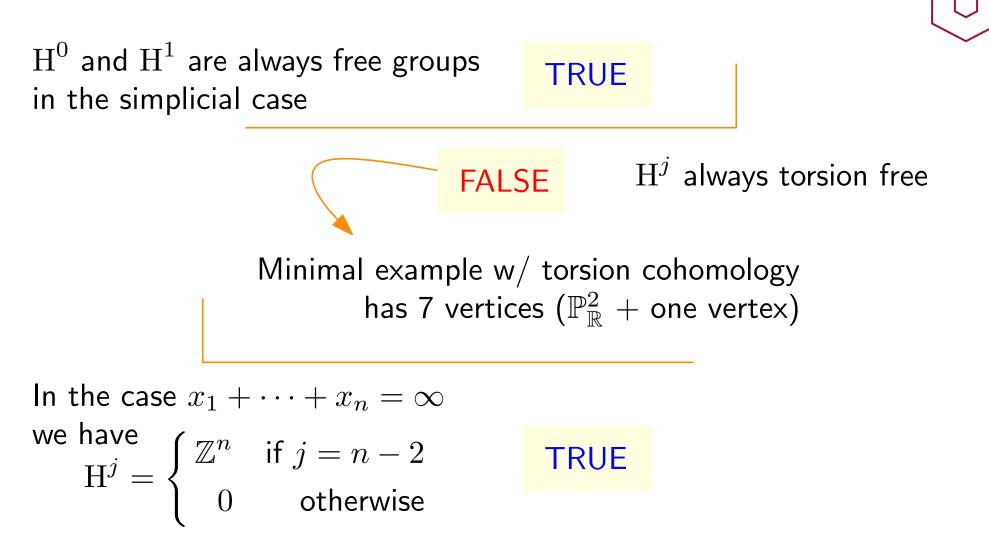
TRUE

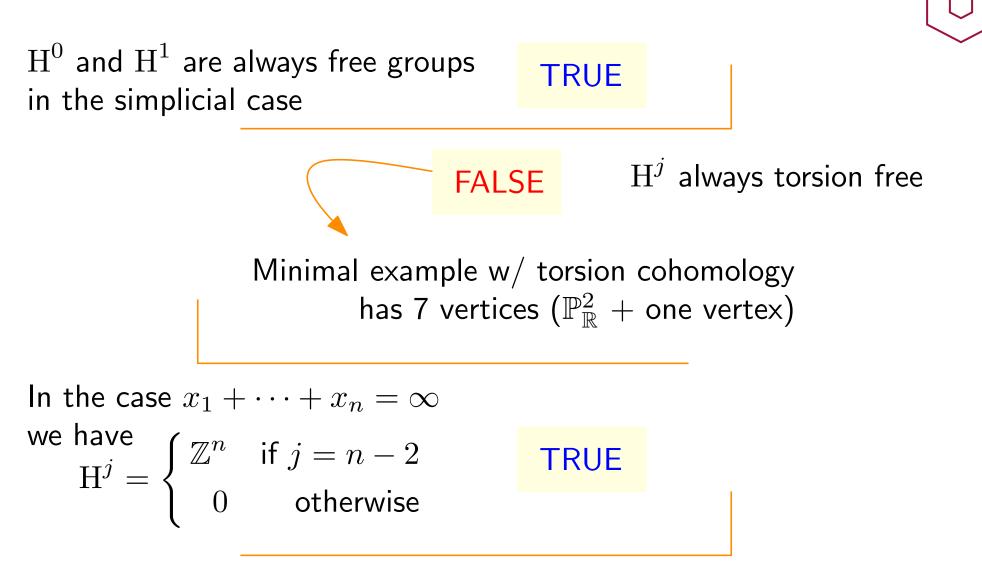
 ${\rm H}^0$ and ${\rm H}^1$ are always free groups in the simplicial case

 \mathbf{H}^{j} always torsion free

 H^0 and H^1 are always free groups in the simplicial case TRUE FALSE H^j always torsion free







OPEN

We can use these results in more general cases and/or to study the $\rm Pic^{loc}$ of the Stanley-Reisner ring

Bibliography

- B. Batushk Hilbert-Kunz theory for binoids
- **S. Böttger** Monoids with absorbing elements and their associated algebras
- W. Bruns, J. Herzog Cohen-Macaulay Rings
- G. Cortiñas, C. Haesemeyer, M. E. Walker, C. Weibel Toric Varieties, Monoid Schemes and cdh Descent
- A. Deitmar Schemes over \mathbb{F}_1
- D. Eisenbud, J. Harris The Geometry of Schemes
- D. Eisenbud, B. Sturmfels Binomial Ideals
- J. Flores, C. Weibel Picard groups and Class groups of Monoid Schemes
- R. Hartshorne Algebraic Geometry
- A. Hatcher Algebraic Topology
- **J. López Peña, O. Lorscheid** Mapping \mathbb{F}_1 -land: an overview of geometries over the field with one element
- E. Miller, B. Sturmfels Combinatorial Commutative Algebra
- I. Pirashvili On Cohomology and vector bundles over monoid schemes

