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Definition and Motivation

Binoid B = (B,+, 0,∞) Binoid Algebra R[B]

If N = (B,+, 0) then

R[B] := R[N ]�T∞

We can have 0-divisors
a+ b =∞ =⇒ T a ∗ T b = 0

and we can try to describe combinatorially the
algebraic properties of more algebras.

Monoid M = (M,+, 0) Monoid Algebra R[M ]

Theorem (Eisenbud, Sturmfels 1996). All and only
the varieties closed under component-wise
multiplication are binoidal varieties.
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Integral Binoids

B• := B r {∞} If it is a monoid, we say that B is integral

Ex: M monoid ⇒ (M ∪ {∞},+, 0,∞) integral

(N ∪ {∞},+, 0,∞)

We should recover monoid theory from the one of integral binoids

B = (X,Y | X + Y =∞) non integral

K[B] = K[x, y]�〈xy〉 non integral

R = K[x, y]�〈x(x− y)〉 comes from

B = (X,Y | 2X = X + Y ) integral but non cancellative

X 6= Y
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M monoid, S set

M y S : M × S −→ S

(a, s) 7−→ a+ s

(0, s) 7−→ s

(a+ b) + s = a+ (b+ s)



M -sets

M monoid, S set

M y S : M × S −→ S

(a, s) 7−→ a+ s

(0, s) 7−→ s

M binoid, (S, p) pointed set

M y S : M × S −→ S

(a, s) 7−→ a+ s

(0, s) 7−→ s

(∞, s) 7−→ p

(a, p) 7−→ p(a+ b) + s = a+ (b+ s)

Simone Böttger, Holger Brenner

Introduction of Binoids and theoric bases

Bayarjargal Batsukh, Holger Brenner

Hilbert-Kunz multiplicity for M -sets
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Something we cannot do with
monoids: quotients

Rees equiv. relation: ∼I

a ∼I b ⇐⇒ a = b or
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∞ if b ∈ I
b else



Ideals

M binoid, I ⊆M , I an M -set

I ideal of M .

• ∞ ∈ I
• closed under y

Something we cannot do with
monoids: quotients

Rees equiv. relation: ∼I

a ∼I b ⇐⇒ a = b or

a, b ∈ I
M�I := M�∼I

p ⊂M ideal is prime if a+ b ∈ p⇒ a ∈ p or b ∈ p
Equiv. M r p is a monoid

Spec(M) := {p ⊂M | p prime ideal}
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Build Spec up

Theorem (Böttger 2014). If M is a binoid
with generating subset G ⊆M then every
prime ideal of M is of the form 〈A〉 for some
subset A ⊆ G.

Proposition (A. 2014). S ⊆ G. I = 〈S〉 is
prime iff for every relation ri between

generators of M , the elements of S ∪ {∞}
are either on both sides of ri or on none.

(x, y, z | x+ y = 2z)

〈∞〉
〈x〉, 〈y〉, 〈z〉
〈x, y〉, 〈x, z〉, 〈y, z〉
〈x, y, z〉

Algorithm.

IN: Generators and relations between them
OUT: List of prime ideals of M
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Topology on Spec

I ideal of M

topology of closed subsets (Zariski topology)

V (I) := {p ∈ SpecM | I ⊆ p}

D(I) = {p ∈ SpecM | I * p} D(f) = {p ∈ SpecM | f /∈ p}

Mp := −(M r p) +M�∼loc

f ∈M nilpotent if
∃n ∈ N s.t. nf =∞

Mf := {a− nf | a ∈M,n ∈ N}

f non nilpotent

Localization: M r p monoid ⇒ we can invert elements
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Structural Sheaf

Presheaf defined on the basis
of fundamental open subsets

Top(SpecM) −→ Bin

D(f) 7−→Mf

Its sheafification is the
structural sheaf, O

(Spec(M),OSpecM ) is an affine binoid scheme.

If X is a topological space, OX is a sheaf of
binoids on X and (X,OX) is locally isomorphic
to affine binoid schemes, then (X,OX) is a
binoid scheme.

The category of binoid schemes has
finite products and coproducts.

TODO: Dive into Categorial properties



Simplicial complices

Let V = {1, . . . , n}. An abstract simplicial complex is
4 ⊆ P(V ) closed under subsets, i.e.

F ∈ 4, G ⊆ F ⇒ G ∈ 4
F ∈ 4 is a face

F ∈ 4 maximal w.r.t. ⊂ is a facet



Simplicial complices

1

2

3

Let V = {1, . . . , n}. An abstract simplicial complex is
4 ⊆ P(V ) closed under subsets, i.e.

F ∈ 4, G ⊆ F ⇒ G ∈ 4
F ∈ 4 is a face

F ∈ 4 maximal w.r.t. ⊂ is a facet

V = {1, 2, 3}

4 = {∅, {1}, {2}, {3}, {1, 2}}



Simplicial complices
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Let V = {1, . . . , n}. An abstract simplicial complex is
4 ⊆ P(V ) closed under subsets, i.e.

F ∈ 4, G ⊆ F ⇒ G ∈ 4
F ∈ 4 is a face

F ∈ 4 maximal w.r.t. ⊂ is a facet

V = {1, 2, 3}

4 = {∅, {1}, {2}, {3}, {1, 2}}

4 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}
1

2

3
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Simplicial binoids

4 simplicial complex on V = 1, . . . , n

M4 generated by x1, . . . , xn with
relations given by the minimal
non-faces of 4 1

2

3

(x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

M4 is a simplicial binoid

4 is (n− 1)-simplex iff M4 is integral

R[M4] is Stanley-Reisner algebra of 4

Combinatorial description of
Spec4 := SpecM4

from complement
of facets

Spec(4) = {{3}, {1, 2}}⊂
= {{3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
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Spec of Simplicial binoids

M4xi
localization at a vertex

We can localize many times until we reach a non-face

Invert xi

M4F invert all elements in face F

1

2

3 (x1, x2, x3 | x1 + x3 =∞, x2 + x3 =∞)

Invert x1 M4x1
= (x1,−x1, . . . | x1 − x1 = 0, x3 =∞) ∼= (N×Z)∞

Invert x3 M4x3
= (x1, . . . | x1 = x2 =∞, x3 − x3 = 0) ∼= Z∞

Invert x1, x2 M4x1,x2

∼= (Z× Z)∞

M4x1,x3
= (x1, . . . | 0 =∞) = 0Invert x1, x3

x1 + x3 =∞
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The sheaf of invertibles O∗

D(xi) := {p ∈ Spec4 | xi /∈ p}

1

2

3

D(x3) = {{x1, x2}}
D(x1) = {{x3}, {x2, x3}}

Theorem. Let X be an affine binoid
scheme and F a sheaf of abelian groups on
X. Then

Hn(X,F) = 0, ∀n ≥ 1

Theorem (I. Pirashvili 2014). For X of finite
type, Čech Cohomology is Sheaf Cohomology

O∗ : Top(Spec4) −→ Ab

D(F ) −→ Z#F

D(xi, xj) = D(xi) ∩D(xj)
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Vector Bundles

A vector bundle on a binoid scheme X is a
sheaf V together with an action of OX s.t.
it is locally isomorphic to O∧nX

Vectn(X) is the set of
isomorphim classes of

v.b. on X of rank n

Pic(X) := Vect1(X)
line bundles.
Group w/ the smash
product of OX -sets.

Theorem (I. Pirashvili 2014).

• Vectn(X)
1:1←→ H1(X,GLn(OX))

• Pic(X) ∼= H1(X,O∗X)
We call Čech-Picard complex the

Čech complex of the sheaf of
invertibles Č•(X,O∗)
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Puncturing

Since in the affine case everything
vanishes, we puncture the
spectrum by removing the (unique)
maximal ideal M+ := M rM∗

Spec◦M := SpecMr{M+}

The punctured specturm is quasi-affine and
covered by the D(xi)’s, where xi’s are the

generators of the maximal ideal M+

We are interested in the
local Picard group

PiclocM := Pic(Spec◦M)

Computed through the Čech-Picard complex
on the covering given by the D(xi)’s and
intersections given by

D(xi1 , . . . , xik) = D(xi1) ∩ · · · ∩D(xik)
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1

2

3

Our favourite (for now) example

Spec◦4 = {{x3}, {x1, x2},
{x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x3}, {x2, x3}}
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D(x3) = {{x1, x2}}

(Mx1
)∗ = Z

(Mx2
)∗ = Z

(Mx3
)∗ = Z

(Mx1,x2)∗ = Z2

Local invertibles

0 Z× Z× Z Z2 0

(α1, α2, α3) (−α1, α2)

Čech Complex

Ȟ0(4,O∗) = Z



Local Čech-Picard complex
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Our new favourite example: x1 + x2 + x3 =∞
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Local Čech-Picard complex

1

2

3

Our new favourite example: x1 + x2 + x3 =∞

Spec◦4 = {{x1}, {x2}, {x3}
{x1, x2}, {x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x2}, {x3}, {x2, x3}}
D(x2) = {{x1}, {x3}, {x1, x3}}
D(x3) = {{x1}, {x2}, {x1, x2}}

(Mxi
)∗ = Z

(Mxi,xj )∗ = Z2

for 1 ≤ i < j ≤ 3

Local invertibles

0 Z× Z× Z Z2 × Z2 × Z2 0

(α1, α2, α3) ((−α1, α2), (−α1, α3)), (−α2, α3))
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Local Čech-Picard complex

1

2

3

Our new favourite example: x1 + x2 + x3 =∞

Spec◦4 = {{x1}, {x2}, {x3}
{x1, x2}, {x1, x3}, {x2, x3}}

Covered by

D(x1) = {{x2}, {x3}, {x2, x3}}
D(x2) = {{x1}, {x3}, {x1, x3}}
D(x3) = {{x1}, {x2}, {x1, x2}}

(Mxi
)∗ = Z

(Mxi,xj )∗ = Z2

for 1 ≤ i < j ≤ 3

Local invertibles

0 Z× Z× Z Z2 × Z2 × Z2 0

(α1, α2, α3) ((−α1, α2), (−α1, α3)), (−α2, α3))

Čech Complex

Ȟ0(4,O∗) = 0 Ȟ1(4,O∗) = Z3
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We have an explicit description of
Pic(X) in our new favourite case

A line bundle V is locally
Vxi
∼= Mxi

∼= 〈ei〉
On the intersection D(xi, xj)
we have

ei = ej + bij

ej = ei + bji

M = (x1, x2, x3 | x1 + x2 + x3 =∞)

S = (e1, e2, e3 | e1 + α12x2 = e2 + α21x1
e1 + α13x3 = e3 + α31x1
e2 + α23x3 = e3 + α32x3

)

Easy computations → obtain
three relations

ei + αijxj = ej + αjixi

Up to isomorphism this 6 parameters
αij give us Z3 possibilities.



Vect1 in case x1 + x2 + x3 =∞

We have an explicit description of
Pic(X) in our new favourite case

A line bundle V is locally
Vxi
∼= Mxi

∼= 〈ei〉
On the intersection D(xi, xj)
we have

ei = ej + bij

ej = ei + bji

M = (x1, x2, x3 | x1 + x2 + x3 =∞)

S = (e1, e2, e3 | e1 + α12x2 = e2 + α21x1
e1 + α13x3 = e3 + α31x1
e2 + α23x3 = e3 + α32x3

)

Easy computations → obtain
three relations

ei + αijxj = ej + αjixi

Up to isomorphism this 6 parameters
αij give us Z3 possibilities.

They are the all and only such
M -sets. Group with ∧M .
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Link complices and main result

Let 4 be a simplicial compex
and F ∈ 4 one of its faces.

The link of F in 4 is
lk4(F ) := {G ∈ 4 | F ∩X = ∅, F ∪G ∈ 4}

1

2

3

F = {1, 2} ∈ 4
lk4(F ) = ∅

F = {1} ∈ 4
lk4(F ) = {∅

{2}, {3}}

Theorem (A. 2014). The cohomology of the local Čech-Picard
complex of 4 can be computed with the following formulas

H0(4,O∗) = Z#{0−dim facets of 4}

H1(4,O∗) = Z(
∑

rvi)−#{0−dim non-facets of 4}

Hj(4,O∗) =
⊕
vi∈V

Hj−1(C•lk4(vi)
) • C•

lk4(vi)
:= C•(lk4(vi),Z)

• rvi = rk(H0(C•
lk4(vi)

))

• j ≥ 2
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Conjectures and Corollaries

H0 and H1 are always free groups
in the simplicial case

Hj always torsion free

TRUE

Minimal example w/ torsion cohomology
has 7 vertices (P2R + one vertex)

FALSE

In the case x1 + · · ·+ xn =∞
we have

Hj =

{
Zn if j = n− 2

0 otherwise

TRUE

We can use these results in more
general cases and/or to study the
Picloc of the Stanley-Reisner ring

OPEN
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