## Sheaf Cohomology on Binoid Schemes

Davide Alberelli<br>dalberelli@uos.de

Welcome Home Workshop 2014
Torino, 22 Dicembre 2014

DFG
GK 1916

## Definition and Motivation

Monoid $M=(M,+, 0)$
Monoid Algebra $R[M]$

$$
\begin{aligned}
& M \longrightarrow R[M] \\
& 0 \longmapsto 1 \\
& a \longmapsto T^{a} \\
& \text { and } \\
& \\
& T^{a} * T^{b}:=T^{a+b}
\end{aligned}
$$

## Definition and Motivation

Monoid $M=(M,+, 0)$
Monoid Algebra $R[M]$

$$
T^{a} * T^{b}:=T^{a+b}
$$

We can study Algebras from the combinatorics of Monoids Toric Geometry, Tropical Geometry, Mirror Symetry, ...

Cannot represent 0-divisors
Cannot quotient out ideals of monoids

## Definition and Motivation

Monoid $M=(M,+, 0)$
Binoid $B=(B,+, 0, \infty)$

Monoid Algebra $R[M]$
Binoid Algebra $R[B]$

If $N=(B,+, 0)$ then

$$
R[B]:=R[N] / T^{\infty}
$$

## Definition and Motivation

Monoid $M=(M,+, 0)$
Binoid $B=(B,+, 0, \infty)$

Monoid Algebra $R[M]$
Binoid Algebra $R[B]$

If $N=(B,+, 0)$ then

$$
R[B]:=R[N] / T^{\infty}
$$

We can have 0-divisors

$$
a+b=\infty \Longrightarrow T^{a} * T^{b}=0
$$

and we can try to describe combinatorially the algebraic properties of more algebras.

What algebras?

## Definition and Motivation

Monoid $M=(M,+, 0)$
Binoid $B=(B,+, 0, \infty)$

Monoid Algebra $R[M]$
Binoid Algebra $R[B]$

If $N=(B,+, 0)$ then

$$
R[B]:=R[N] / T^{\infty}
$$

We can have 0-divisors

$$
a+b=\infty \Longrightarrow T^{a} * T^{b}=0
$$

and we can try to describe combinatorially the algebraic properties of more algebras.

Theorem (Eisenbud, Sturmfels 1996). All and only the varieties closed under component-wise multiplication are binoidal varieties.

## Integral Binoids

$B_{\bullet}:=B \backslash\{\infty\} \quad$ If it is a monoid, we say that $B$ is integral

## Integral Binoids

$B_{\bullet}:=B \backslash\{\infty\} \quad$ If it is a monoid, we say that $B$ is integral

Ex: $M$ monoid $\Rightarrow(M \cup\{\infty\},+, 0, \infty)$ integral

$$
(\mathbb{N} \cup\{\infty\},+, 0, \infty)
$$

We should recover monoid theory from the one of integral binoids

## Integral Binoids

$B_{\bullet}:=B \backslash\{\infty\} \quad$ If it is a monoid, we say that $B$ is integral

$$
\begin{aligned}
& \text { Ex: } M \text { monoid } \Rightarrow(M \cup\{\infty\},+, 0, \infty) \text { integral } \\
& \qquad(\mathbb{N} \cup\{\infty\},+, 0, \infty)
\end{aligned}
$$

We should recover monoid theory from the one of integral binoids

$$
\begin{aligned}
B & =(X, Y \mid X+Y=\infty) & & \text { non integral } \\
\mathbb{K}[B] & =\mathbb{K}[x, y] /\langle x y\rangle & & \text { non integral }
\end{aligned}
$$

## Integral Binoids

$B_{\bullet}:=B \backslash\{\infty\} \quad$ If it is a monoid, we say that $B$ is integral

$$
\begin{aligned}
& \text { Ex: } M \text { monoid } \Rightarrow(M \cup\{\infty\},+, 0, \infty) \text { integral } \\
& \qquad(\mathbb{N} \cup\{\infty\},+, 0, \infty)
\end{aligned}
$$

We should recover monoid theory from the one of integral binoids

$$
\begin{aligned}
B & =(X, Y \mid X+Y=\infty) & & \text { non integral } \\
\mathbb{K}[B] & =\mathbb{K}[x, y] /\langle x y\rangle & & \text { non integral }
\end{aligned}
$$

$$
\begin{array}{ll}
R=\mathbb{K}[x, y] /\langle x(x-y)\rangle & \text { comes from } \\
B=(X, Y \mid 2 X=X+Y) & \text { integral but non cancellative } \\
& X \neq Y
\end{array}
$$

## $M$-sets

$M$ monoid, $S$ set
$M \curvearrowright S: M \times S \longrightarrow S$

$$
\begin{aligned}
& (a, s) \longmapsto a+s \\
& (0, s) \longmapsto s
\end{aligned}
$$

$$
(a+b)+s=a+(b+s)
$$

## $M$-sets

$M$ monoid, $S$ set

$$
M \curvearrowright S: M \times S \longrightarrow S
$$

$$
(a, s) \longmapsto a+s
$$

$$
(0, s) \longmapsto s
$$

$$
(a+b)+s=a+(b+s)
$$

$M$ binoid, $(S, p)$ pointed set

$$
M \curvearrowright S: M \times S \longrightarrow S
$$

$$
\begin{aligned}
(a, s) & \longmapsto a+s \\
(0, s) & \longmapsto s \\
(\infty, s) & \longmapsto p \\
(a, p) & \longmapsto p
\end{aligned}
$$

Simone Böttger, Holger Brenner
Introduction of Binoids and theoric bases

Bayarjargal Batsukh, Holger Brenner
Hilbert-Kunz multiplicity for $M$-sets

## Ideals

$M$ binoid, $I \subseteq M, I$ an $M$-set
$I$ ideal of $M$.

- $\infty \in I$
- closed under $\curvearrowright$


## Ideals

$M$ binoid, $I \subseteq M, I$ an $M$-set
$I$ ideal of $M$.

- $\infty \in I$
- closed under $\curvearrowright$

Something we cannot do with monoids: quotients

Rees equiv. relation: $\sim_{I}$

$$
\begin{aligned}
a \sim_{I} b \Longleftrightarrow & a=b \text { or } \\
& a, b \in I
\end{aligned}
$$

## Ideals

$M$ binoid, $I \subseteq M, I$ an $M$-set
$I$ ideal of $M$.

- $\infty \in I$
- closed under $\curvearrowright$

$$
M_{I}:=M / \sim_{I}
$$

Something we cannot do with monoids: quotients

Rees equiv. relation: $\sim_{I}$

$$
\begin{aligned}
a \sim_{I} b \Longleftrightarrow & a=b \text { or } \\
& a, b \in I
\end{aligned}
$$

Set to $\infty$ everything in $I$ and leave everything else untouched.

$$
\begin{array}{rl}
M & M / I \\
b \longrightarrow\left\{\begin{array}{l}
\infty \text { if } b \in I \\
b \text { else }
\end{array}\right.
\end{array}
$$

## Ideals

$M$ binoid, $I \subseteq M, I$ an $M$-set
$I$ ideal of $M$.

- $\infty \in I$
- closed under $\curvearrowright$

$$
M_{I}:=M / \sim_{I}
$$

$\mathfrak{p} \subset M$ ideal is prime if $a+b \in \mathfrak{p} \Rightarrow a \in \mathfrak{p}$ or $b \in \mathfrak{p}$
Equiv. $M \backslash \mathfrak{p}$ is a monoid

$$
\operatorname{Spec}(M):=\{\mathfrak{p} \subset M \mid \mathfrak{p} \text { prime ideal }\}
$$

## Build Spec up

Theorem (Böttger 2014). If $M$ is a binoid with generating subset $G \subseteq M$ then every prime ideal of $M$ is of the form $\langle A\rangle$ for some subset $A \subseteq G$.

$$
(x, y, z \mid x+y=2 z)
$$

## Build Spec up

Theorem (Böttger 2014). If $M$ is a binoid with generating subset $G \subseteq M$ then every

$$
(x, y, z \mid x+y=2 z)
$$ prime ideal of $M$ is of the form $\langle A\rangle$ for some subset $A \subseteq G$.

$\langle\infty\rangle$
$\langle x\rangle,\langle y\rangle,\langle z\rangle$
$\langle x, y\rangle,\langle x, z\rangle,\langle y, z\rangle$
$\langle x, y, z\rangle$

Proposition (A. 2014). $S \subseteq G . I=\langle S\rangle$ is prime iff for every relation $r_{i}$ between generators of $M$, the elements of $S \cup\{\infty\}$ are either on both sides of $r_{i}$ or on none.

## Build Spec up

Theorem (Böttger 2014). If $M$ is a binoid with generating subset $G \subseteq M$ then every

$$
(x, y, z \mid x+y=2 z)
$$ prime ideal of $M$ is of the form $\langle A\rangle$ for some subset $A \subseteq G$.

$\langle\infty\rangle$

$\langle x, 9\rangle,\langle x, z\rangle,\langle y, z\rangle$ $\langle x, y, z\rangle$

Proposition (A. 2014). $S \subseteq G . I=\langle S\rangle$ is prime iff for every relation $r_{i}$ between generators of $M$, the elements of $S \cup\{\infty\}$ are either on both sides of $r_{i}$ or on none.

## Build Spec up

Theorem (Böttger 2014). If $M$ is a binoid with generating subset $G \subseteq M$ then every

$$
(x, y, z \mid x+y=2 z)
$$ prime ideal of $M$ is of the form $\langle A\rangle$ for some subset $A \subseteq G$.

$\langle\infty\rangle$

$\langle x, 9\rangle,\langle x, z\rangle,\langle y, z\rangle$ $\langle x, y, z\rangle$

Proposition (A. 2014). $S \subseteq G . I=\langle S\rangle$ is prime iff for every relation $r_{i}$ between generators of $M$, the elements of $S \cup\{\infty\}$ are either on both sides of $r_{i}$ or on none.

Algorithm.
IN: Generators and relations between them
OUT: List of prime ideals of $M$

## Topology on Spec

$I$ ideal of $M$

$$
V(I):=\{\mathfrak{p} \in \operatorname{Spec} M \mid I \subseteq \mathfrak{p}\}
$$

topology of closed subsets (Zariski topology)

## Topology on Spec

$I$ ideal of $M$

$$
V(I):=\{\mathfrak{p} \in \operatorname{Spec} M \mid I \subseteq \mathfrak{p}\}
$$

topology of closed subsets (Zariski topology)

$$
D(I)=\{\mathfrak{p} \in \operatorname{Spec} M \mid I \nsubseteq \mathfrak{p}\} \mid D(f)=\{\mathfrak{p} \in \operatorname{Spec} M \mid f \notin \mathfrak{p}\}
$$

## Topology on Spec

$I$ ideal of $M$

$$
V(I):=\{\mathfrak{p} \in \operatorname{Spec} M \mid I \subseteq \mathfrak{p}\}
$$

topology of closed subsets (Zariski topology)

$$
D(I)=\{\mathfrak{p} \in \operatorname{Spec} M \mid I \nsubseteq \mathfrak{p}\} \mid D(f)=\{\mathfrak{p} \in \operatorname{Spec} M \mid f \notin \mathfrak{p}\}
$$

Localization: $M \backslash \mathfrak{p}$ monoid $\Rightarrow$ we can invert elements

$$
\begin{aligned}
M_{\mathfrak{p}} & :=-(M \backslash \mathfrak{p})+M / \sim_{\mathrm{loc}} \\
& =\{a-m \mid a \in M, m \in M \backslash \mathfrak{p}\} / \sim_{\mathrm{loc}}
\end{aligned}
$$

## Topology on Spec

$I$ ideal of $M$

$$
V(I):=\{\mathfrak{p} \in \operatorname{Spec} M \mid I \subseteq \mathfrak{p}\}
$$

topology of closed subsets (Zariski topology)

$$
D(I)=\{\mathfrak{p} \in \operatorname{Spec} M \mid I \nsubseteq \mathfrak{p}\} \quad D(f)=\{\mathfrak{p} \in \operatorname{Spec} M \mid f \notin \mathfrak{p}\}
$$

Localization: $M \backslash \mathfrak{p}$ monoid $\Rightarrow$ we can invert elements

$$
M_{\mathfrak{p}}:=-(M \backslash \mathfrak{p})+M / \sim_{\mathrm{loc}}
$$

$$
\begin{aligned}
& f \in M \text { nilpotent if } \\
& \exists n \in \mathbb{N} \text { s.t. } n f=\infty \\
& \quad f \overline{\text { non nilpotent }}
\end{aligned}
$$

$$
M_{f}:=\{a-n f \mid a \in M, n \in \mathbb{N}\}
$$

## Structural Sheaf

Presheaf defined on the basis of fundamental open subsets

$$
\begin{aligned}
\operatorname{Top}(\operatorname{Spec} M) & \longrightarrow \mathrm{Bin} \\
D(f) & \longmapsto M_{f}
\end{aligned}
$$

Its sheafification is the structural sheaf, $\mathcal{O}$

## Structural Sheaf

Presheaf defined on the basis of fundamental open subsets

$$
\begin{aligned}
\operatorname{Top}(\mathrm{Spec} M) & \longrightarrow \mathrm{Bin} \\
D(f) & \longmapsto M_{f}
\end{aligned}
$$

Its sheafification is the structural sheaf, $\mathcal{O}$
$\left(\operatorname{Spec}(M), \mathcal{O}_{\operatorname{Spec} M}\right)$ is an affine binoid scheme.
If $X$ is a topological space, $\mathcal{O}_{X}$ is a sheaf of binoids on $X$ and $\left(X, \mathcal{O}_{X}\right)$ is locally isomorphic to affine binoid schemes, then $\left(X, \mathcal{O}_{X}\right)$ is a binoid scheme.

## Structural Sheaf

Presheaf defined on the basis of fundamental open subsets

$$
\begin{aligned}
\operatorname{Top}(\mathrm{Spec} M) & \longrightarrow \mathrm{Bin} \\
D(f) & \longmapsto M_{f}
\end{aligned}
$$

Its sheafification is the structural sheaf, $\mathcal{O}$
$\left(\operatorname{Spec}(M), \mathcal{O}_{\text {Spec } M}\right)$ is an affine binoid scheme.
If $X$ is a topological space, $\mathcal{O}_{X}$ is a sheaf of binoids on $X$ and ( $X, \mathcal{O}_{X}$ ) is locally isomorphic to affine binoid schemes, then $\left(X, \mathcal{O}_{X}\right)$ is a binoid scheme.

The category of binoid schemes has finite products and coproducts.

TODO: Dive into Categorial properties

## Simplicial complices

Let $V=\{1, \ldots, n\}$. An abstract simplicial complex is
$\triangle \subseteq \mathcal{P}(V)$ closed under subsets, i.e.
$F \in \triangle, G \subseteq F \Rightarrow G \in \triangle$
$F \in \triangle$ is a face
$F \in \triangle$ maximal w.r.t. $\subset$ is a facet

## Simplicial complices

Let $V=\{1, \ldots, n\}$. An abstract simplicial complex is
$\triangle \subseteq \mathcal{P}(V)$ closed under subsets, i.e.

$$
F \in \triangle, G \subseteq F \Rightarrow G \in \triangle
$$

$F \in \triangle$ is a face
$F \in \triangle$ maximal w.r.t. $\subset$ is a facet

$$
\begin{aligned}
V & =\{1,2,3\} \\
\triangle & =\{\varnothing,\{1\},\{2\},\{3\},\{1,2\}\}
\end{aligned}
$$



## Simplicial complices

Let $V=\{1, \ldots, n\}$. An abstract simplicial complex is
$\triangle \subseteq \mathcal{P}(V)$ closed under subsets, i.e.

$$
F \in \triangle, G \subseteq F \Rightarrow G \in \triangle
$$

$F \in \triangle$ is a face
$F \in \triangle$ maximal w.r.t. $\subset$ is a facet
$V=\{1,2,3\}$
$\triangle=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\}\}$

$\triangle=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}$


## Simplicial binoids

$\triangle$ simplicial complex on $V=1, \ldots, n$
$M_{\triangle}$ generated by $x_{1}, \ldots, x_{n}$ with relations given by the minimal non-faces of $\triangle$

## Simplicial binoids

$\triangle$ simplicial complex on $V=1, \ldots, n$ $M_{\triangle}$ generated by $x_{1}, \ldots, x_{n}$ with relations given by the minimal non-faces of $\triangle$


$$
\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{3}=\infty, x_{2}+x_{3}=\infty\right)
$$

$M_{\triangle}$ is a simplicial binoid

## Simplicial binoids

$\triangle$ simplicial complex on $V=1, \ldots, n$
$M_{\triangle}$ generated by $x_{1}, \ldots, x_{n}$ with relations given by the minimal non-faces of $\triangle$

$$
\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{3}=\infty, x_{2}+x_{3}=\infty\right)
$$

$M_{\triangle}$ is a simplicial binoid
$\triangle$ is $(n-1)$-simplex iff $M_{\triangle}$ is integral

## Simplicial binoids

$\triangle$ simplicial complex on $V=1, \ldots, n$
$M_{\triangle}$ generated by $x_{1}, \ldots, x_{n}$ with relations given by the minimal non-faces of $\triangle$

$$
\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{3}=\infty, x_{2}+x_{3}=\infty\right)
$$

$M_{\triangle}$ is a simplicial binoid
$\triangle$ is $(n-1)$-simplex iff $M_{\triangle}$ is integral
$R\left[M_{\triangle}\right]$ is Stanley-Reisner algebra of $\triangle$

## Simplicial binoids

$\triangle$ simplicial complex on $V=1, \ldots, n$
$M_{\triangle}$ generated by $x_{1}, \ldots, x_{n}$ with relations given by the minimal non-faces of $\triangle$

$$
\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{3}=\infty, x_{2}+x_{3}=\infty\right)
$$

$M_{\triangle}$ is a simplicial binoid
$\triangle$ is $(n-1)$-simplex iff $M_{\triangle}$ is integral
$R\left[M_{\triangle}\right]$ is Stanley-Reisner algebra of $\triangle$
Combinatorial description of
$\operatorname{Spec} \triangle:=\operatorname{Spec} M_{\triangle}$ from complement
of facets

## Simplicial binoids

$\triangle$ simplicial complex on $V=1, \ldots, n$ $M_{\triangle}$ generated by $x_{1}, \ldots, x_{n}$ with relations given by the minimal non-faces of $\triangle$

$$
\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{3}=\infty, x_{2}+x_{3}=\infty\right)
$$

$M_{\triangle}$ is a simplicial binoid
$\triangle$ is $(n-1)$-simplex iff $M_{\triangle}$ is integral
$R\left[M_{\triangle}\right]$ is Stanley-Reisner algebra of $\triangle$
Combinatorial description of

$$
\begin{array}{rlr}
\operatorname{Spec}(\triangle) & =\overline{\{\{3\},\{1,2\}\}} & \text { Spec } \triangle:=\text { Spec } M_{\triangle} \\
& =\{\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} & \text { from complement } \\
\text { of facets }
\end{array}
$$

## Spec of Simplicial binoids

$M_{\triangle_{x_{i}}}$ localization at a vertex Invert $x_{i}$

## Spec of Simplicial binoids

$M_{\triangle_{x_{i}}}$ localization at a vertex Invert $x_{i}$

We can localize many times until we reach a non-face
$M_{\triangle_{F}}$ invert all elements in face $F$

## Spec of Simplicial binoids

$M_{\triangle_{x_{i}}}$ localization at a vertex Invert $x_{i}$

We can localize many times until we reach a non-face


## Spec of Simplicial binoids

$M_{\triangle_{x_{i}}}$ localization at a vertex Invert $x_{i}$

We can localize many times until we reach a non-face
$M_{\triangle_{F}}$ invert all elements in face $F$


- $3 \quad\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{3}=\infty, x_{2}+x_{3}=\infty\right)$

Invert $x_{1} \quad M_{\triangle_{x_{1}}}=\left(x_{1},-x_{1}, \ldots \mid x_{1}-x_{1}=0, x_{3}=\infty\right) \cong(\mathbb{N} \times \mathbb{Z})^{\infty}$

## Spec of Simplicial binoids

$M_{\triangle_{x_{i}}}$ localization at a vertex Invert $x_{i}$

We can localize many times until we reach a non-face
$M_{\triangle_{F}}$ invert all elements in face $F$


- $3 \quad\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{3}=\infty, x_{2}+x_{3}=\infty\right)$

Invert $x_{1} \quad M_{\triangle_{x_{1}}}=\left(x_{1},-x_{1}, \ldots \mid x_{1}-x_{1}=0, x_{3}=\infty\right) \cong(\mathbb{N} \times \mathbb{Z})^{\infty}$
Invert $x_{3} \quad M_{\triangle_{x_{3}}}=\left(x_{1}, \ldots \mid x_{1}=x_{2}=\infty, x_{3}-x_{3}=0\right) \cong \mathbb{Z}^{\infty}$

## Spec of Simplicial binoids

$M_{\triangle_{x_{i}}}$ localization at a vertex Invert $x_{i}$

We can localize many times until we reach a non-face
$M_{\triangle_{F}}$ invert all elements in face $F$


- $3 \quad\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{3}=\infty, x_{2}+x_{3}=\infty\right)$

Invert $x_{1} \quad M_{\triangle_{x_{1}}}=\left(x_{1},-x_{1}, \ldots \mid x_{1}-x_{1}=0, x_{3}=\infty\right) \cong(\mathbb{N} \times \mathbb{Z})^{\infty}$
Invert $x_{3} \quad M_{\triangle_{x_{3}}}=\left(x_{1}, \ldots \mid x_{1}=x_{2}=\infty, x_{3}-x_{3}=0\right) \cong \mathbb{Z}^{\infty}$
Invert $x_{1}, x_{2}$

$$
M_{{x_{1}, x_{2}} \cong(\mathbb{Z} \times \mathbb{Z})^{\infty}, ~}^{\text {and }}
$$

## Spec of Simplicial binoids

$M_{\triangle_{x_{i}}}$ localization at a vertex Invert $x_{i}$

We can localize many times until we reach a non-face
$M_{\triangle_{F}}$ invert all elements in face $F$


- $3 \quad\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{3}=\infty, x_{2}+x_{3}=\infty\right)$

Invert $x_{1} \quad M_{\triangle_{x_{1}}}=\left(x_{1},-x_{1}, \ldots \mid x_{1}-x_{1}=0, x_{3}=\infty\right) \cong(\mathbb{N} \times \mathbb{Z})^{\infty}$
Invert $x_{3} \quad M_{\triangle_{x_{3}}}=\left(x_{1}, \ldots \mid x_{1}=x_{2}=\infty, x_{3}-x_{3}=0\right) \cong \mathbb{Z}^{\infty}$
Invert $x_{1}, x_{2}$

$$
M_{{x_{1}, x_{2}} \cong(\mathbb{Z} \times \mathbb{Z})^{\infty}, ~}^{\text {and }}
$$

Invert $x_{1}, x_{3}$

$$
M_{\triangle_{x_{1}, x_{3}}}=\left(x_{1}, \ldots \mid 0=\infty\right)=0
$$

## The sheaf of invertibles $\mathcal{O}^{*}$

$$
D\left(x_{i}\right):=\left\{\mathfrak{p} \in \operatorname{Spec} \triangle \mid x_{i} \notin \mathfrak{p}\right\} \quad \begin{aligned}
& D\left(x_{3}\right)=\left\{\left\{x_{1}, x_{2}\right\}\right\} \\
& D\left(x_{1}\right)=\left\{\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$

## The sheaf of invertibles $\mathcal{O}^{*}$

## $D\left(x_{i}\right):=\left\{\mathfrak{p} \in \operatorname{Spec} \triangle \mid x_{i} \notin \mathfrak{p}\right\}$



$$
D\left(x_{i}, x_{j}\right)=D\left(x_{i}\right) \cap D\left(x_{j}\right)
$$

$$
\begin{aligned}
\mathcal{O}^{*}: \operatorname{Top}(\operatorname{Spec} M) & \longrightarrow \mathrm{Ab} \\
\mathcal{U} & \longrightarrow \mathcal{O}(\mathcal{U})^{*}
\end{aligned}
$$

## The sheaf of invertibles $\mathcal{O}^{*}$

## $D\left(x_{i}\right):=\left\{\mathfrak{p} \in \operatorname{Spec} \triangle \mid x_{i} \notin \mathfrak{p}\right\}$

$$
\begin{aligned}
& D\left(x_{3}\right)=\left\{\left\{x_{1}, x_{2}\right\}\right\} \\
& D\left(x_{1}\right)=\left\{\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$

$$
D\left(x_{i}, x_{j}\right)=D\left(x_{i}\right) \cap D\left(x_{j}\right)
$$

$$
\begin{aligned}
\mathcal{O}^{*}: \operatorname{Top}(\operatorname{Spec} \triangle) & \longrightarrow \mathrm{Ab} \\
D(F) & \longrightarrow\left(M_{\triangle_{F}}\right)^{*}
\end{aligned}
$$

## The sheaf of invertibles $\mathcal{O}^{*}$

## $D\left(x_{i}\right):=\left\{\mathfrak{p} \in \operatorname{Spec} \triangle \mid x_{i} \notin \mathfrak{p}\right\}$



$$
D\left(x_{i}, x_{j}\right)=D\left(x_{i}\right) \cap D\left(x_{j}\right)
$$

$$
\begin{aligned}
\mathcal{O}^{*}: \operatorname{Top}(\operatorname{Spec} \triangle) & \longrightarrow \mathrm{Ab} \\
D(F) & \longrightarrow \mathbb{Z}^{\# F}
\end{aligned}
$$

## The sheaf of invertibles $\mathcal{O}^{*}$

$$
D\left(x_{i}\right):=\left\{\mathfrak{p} \in \operatorname{Spec} \triangle \mid x_{i} \notin \mathfrak{p}\right\}
$$

$$
\left\{\begin{array}{l}
D\left(x_{3}\right)=\left\{\left\{x_{1}, x_{2}\right\}\right\} \\
D\left(x_{1}\right)=\left\{\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{array}\right.
$$

$D\left(x_{i}, x_{j}\right)=D\left(x_{i}\right) \cap D\left(x_{j}\right)$

$$
\begin{aligned}
\mathcal{O}^{*}: \operatorname{Top}(\operatorname{Spec} \triangle) & \longrightarrow \mathrm{Ab} \\
D(F) & \longrightarrow \mathbb{Z}^{\# F}
\end{aligned}
$$

Theorem. Let $X$ be an affine binoid scheme and $\mathcal{F}$ a sheaf of abelian groups on $X$. Then

$$
\mathrm{H}^{n}(X, \mathcal{F})=0, \quad \forall n \geq 1
$$

## The sheaf of invertibles $\mathcal{O}^{*}$

$$
D\left(x_{i}\right):=\left\{\mathfrak{p} \in \operatorname{Spec} \triangle \mid x_{i} \notin \mathfrak{p}\right\}
$$

$$
\left\{\begin{array}{l}
D\left(x_{3}\right)=\left\{\left\{x_{1}, x_{2}\right\}\right\} \\
D\left(x_{1}\right)=\left\{\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{array}\right.
$$

$D\left(x_{i}, x_{j}\right)=D\left(x_{i}\right) \cap D\left(x_{j}\right)$

$$
\begin{aligned}
\mathcal{O}^{*}: \operatorname{Top}(\operatorname{Spec} \triangle) & \longrightarrow \mathrm{Ab} \\
D(F) & \longrightarrow \mathbb{Z}^{\# F}
\end{aligned}
$$

Theorem. Let $X$ be an affine binoid scheme and $\mathcal{F}$ a sheaf of abelian groups on $X$. Then

$$
\mathrm{H}^{n}(X, \mathcal{F})=0, \quad \forall n \geq 1
$$

Theorem (I. Pirashvili 2014). For $X$ of finite type, Čech Cohomology is Sheaf Cohomology

## Vector Bundles

A vector bundle on a binoid scheme $X$ is a sheaf $\mathcal{V}$ together with an action of $\mathcal{O}_{X}$ s.t. it is locally isomorphic to $\mathcal{O}_{X}^{\wedge n}$

## Vector Bundles

A vector bundle on a binoid scheme $X$ is a sheaf $\mathcal{V}$ together with an action of $\mathcal{O}_{X}$ s.t. it is locally isomorphic to $\mathcal{O}_{X}^{\wedge n}$
$\operatorname{Vect}_{n}(X)$ is the set of isomorphim classes of v.b. on $X$ of rank $n$
$\operatorname{Pic}(X):=\operatorname{Vect}_{1}(X)$ line bundles.
Group w/ the smash product of $\mathcal{O}_{X}$-sets.

## Vector Bundles

A vector bundle on a binoid scheme $X$ is a sheaf $\mathcal{V}$ together with an action of $\mathcal{O}_{X}$ s.t. it is locally isomorphic to $\mathcal{O}_{X}^{\wedge n}$

$$
\begin{aligned}
\text { Vect }_{n}(X) \text { is the set of } & \operatorname{Pic}(X):=\operatorname{Vect}_{1}(X) \\
\text { isomorphim classes of } & \text { line bundles. } \\
\text { v.b. on } X \text { of rank } n & \text { Group } w / \text { the smash } \\
& \text { product of } \mathcal{O}_{X} \text {-sets. }
\end{aligned}
$$

Theorem (I. Pirashvili 2014).

- $\operatorname{Vect}_{n}(X) \stackrel{1: 1}{\longleftrightarrow} \mathrm{H}^{1}\left(X, \operatorname{GL}_{n}\left(\mathcal{O}_{X}\right)\right)$
- $\operatorname{Pic}(X) \cong \mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{*}\right)$


## Vector Bundles

A vector bundle on a binoid scheme $X$ is a sheaf $\mathcal{V}$ together with an action of $\mathcal{O}_{X}$ s.t. it is locally isomorphic to $\mathcal{O}_{X}^{\wedge n}$

$$
\begin{aligned}
\text { Vect }_{n}(X) \text { is the set of } & \operatorname{Pic}(X):=\operatorname{Vect}_{1}(X) \\
\text { isomorphim classes of } & \text { line bundles. } \\
\text { v.b. on } X \text { of rank } n & \text { Group w/ the smash } \\
& \text { product of } \mathcal{O}_{X} \text {-sets. }
\end{aligned}
$$

Theorem (I. Pirashvili 2014).

- $\operatorname{Vect}_{n}(X) \stackrel{1: 1}{\longleftrightarrow} \mathrm{H}^{1}\left(X, \mathrm{GL}_{n}\left(\mathcal{O}_{X}\right)\right)$
- $\operatorname{Pic}(X) \cong \mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{*}\right)$

We call Čech-Picard complex the Čech complex of the sheaf of invertibles $\check{\mathcal{C}} \bullet\left(X, \mathcal{O}^{*}\right)$

## Puncturing

Since in the affine case everything vanishes, we puncture the spectrum by removing the (unique) maximal ideal $M_{+}:=M \backslash M^{*}$

$$
\operatorname{Spec}^{\circ} M:=\operatorname{Spec} M \backslash\left\{M_{+}\right\}
$$

$\left\{M_{+}\right\}$is the only closed point

## Puncturing

Since in the affine case everything vanishes, we puncture the

$$
\operatorname{Spec}^{\circ} M:=\operatorname{Spec} M \backslash\left\{M_{+}\right\}
$$ spectrum by removing the (unique) maximal ideal $M_{+}:=M \backslash M^{*}$

The punctured specturm is quasi-affine and covered by the $D\left(x_{i}\right)$ 's, where $x_{i}$ 's are the generators of the maximal ideal $M_{+}$

## Puncturing

Since in the affine case everything vanishes, we puncture the spectrum by removing the (unique)

$$
\operatorname{Spec}^{\circ} M:=\operatorname{Spec} M \backslash\left\{M_{+}\right\}
$$ maximal ideal $M_{+}:=M \backslash M^{*}$

The punctured specturm is quasi-affine and covered by the $D\left(x_{i}\right)$ 's, where $x_{i}$ 's are the generators of the maximal ideal $M_{+}$

We are interested in the local Picard group

$$
\operatorname{Pic}^{\text {loc }} M:=\operatorname{Pic}\left(\operatorname{Spec}^{\circ} M\right)
$$

## Puncturing

Since in the affine case everything vanishes, we puncture the spectrum by removing the (unique)

$$
\operatorname{Spec}^{\circ} M:=\operatorname{Spec} M \backslash\left\{M_{+}\right\}
$$ maximal ideal $M_{+}:=M \backslash M^{*}$

The punctured specturm is quasi-affine and covered by the $D\left(x_{i}\right)$ 's, where $x_{i}$ 's are the generators of the maximal ideal $M_{+}$

We are interested in the local Picard group

$$
\operatorname{Pic}^{\text {loc }} M:=\operatorname{Pic}\left(\operatorname{Spec}^{\circ} M\right)
$$

Computed through the Čech-Picard complex on the covering given by the $D\left(x_{i}\right)$ 's and intersections given by

$$
D\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)=D\left(x_{i_{1}}\right) \cap \cdots \cap D\left(x_{i_{k}}\right)
$$

## Local Čech-Picard complex

Our favourite (for now) example

$$
\begin{aligned}
\operatorname{Spec}^{\circ} \triangle= & \left\{\left\{x_{3}\right\},\left\{x_{1}, x_{2}\right\}\right. \\
& \left.\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$

- 3

Covered by

$$
\begin{aligned}
& D\left(x_{1}\right)=\left\{\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& D\left(x_{2}\right)=\left\{\left\{x_{3}\right\},\left\{x_{1}, x_{3}\right\}\right\} \\
& D\left(x_{3}\right)=\left\{\left\{x_{1}, x_{2}\right\}\right\}
\end{aligned}
$$

## Local Čech-Picard complex

Our favourite (for now) example

$$
\begin{aligned}
\operatorname{Spec}^{\circ} \triangle= & \left\{\left\{x_{3}\right\},\left\{x_{1}, x_{2}\right\}\right. \\
& \left.\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$



Covered by
Local invertibles

$$
\begin{array}{lll}
D\left(x_{1}\right)=\left\{\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} & \left(M_{x_{1}}\right)^{*}=\mathbb{Z} & \left(M_{x_{1}, x_{2}}\right)^{*}=\mathbb{Z}^{2} \\
D\left(x_{2}\right)=\left\{\left\{x_{3}\right\},\left\{x_{1}, x_{3}\right\}\right\} & \left(M_{x_{2}}\right)^{*}=\mathbb{Z} & \\
D\left(x_{3}\right)=\left\{\left\{x_{1}, x_{2}\right\}\right\} & \left(M_{x_{3}}\right)^{*}=\mathbb{Z} &
\end{array}
$$

## Local Čech-Picard complex

Our favourite (for now) example

$$
\begin{aligned}
\operatorname{Spec}^{\circ} \triangle= & \left\{\left\{x_{3}\right\},\left\{x_{1}, x_{2}\right\}\right. \\
& \left.\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$

Local invertibles

$$
\begin{array}{lll}
D\left(x_{1}\right)=\left\{\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} & \left(M_{x_{1}}\right)^{*}=\mathbb{Z} & \left(M_{x_{1}, x_{2}}\right)^{*}=\mathbb{Z}^{2} \\
D\left(x_{2}\right)=\left\{\left\{x_{3}\right\},\left\{x_{1}, x_{3}\right\}\right\} & \left(M_{x_{2}}\right)^{*}=\mathbb{Z} & \\
D\left(x_{3}\right)=\left\{\left\{x_{1}, x_{2}\right\}\right\} & \left(M_{x_{3}}\right)^{*}=\mathbb{Z} &
\end{array}
$$

Čech Complex

$$
\begin{aligned}
0 \longrightarrow \\
\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \longrightarrow
\end{aligned} \mathbb{Z}^{2} \longrightarrow\left(-\alpha_{1}, \alpha_{2}\right) \quad 0
$$

## Local Čech-Picard complex

Our favourite (for now) example

$$
\begin{aligned}
\operatorname{Spec}^{\circ} \triangle= & \left\{\left\{x_{3}\right\},\left\{x_{1}, x_{2}\right\}\right. \\
& \left.\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$

Covered by
Local invertibles

$$
\begin{array}{ll}
D\left(x_{1}\right)=\left\{\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} & \left(M_{x_{1}}\right)^{*}=\mathbb{Z} \\
D\left(x_{2}\right)=\left\{\left\{x_{3}\right\},\left\{x_{1}, x_{3}\right\}\right\} & \left(M_{x_{2}}\right)^{*}=\mathbb{Z} \\
D\left(x_{3}\right)=\left\{\left\{x_{1}, x_{2}\right\}\right\} & \left(M_{x_{3}}\right)^{*}=\mathbb{Z}
\end{array}
$$

Čech Complex


$$
\check{\mathrm{H}}^{0}\left(\triangle, \mathcal{O}^{*}\right)=\mathbb{Z}
$$

## Local Čech-Picard complex

Our new favourite example: $x_{1}+x_{2}+x_{3}=\infty$

$$
\begin{aligned}
\operatorname{Spec}^{\circ} \triangle= & \left\{\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\}\right. \\
& \left.\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$



Covered by

$$
\begin{aligned}
& D\left(x_{1}\right)=\left\{\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& D\left(x_{2}\right)=\left\{\left\{x_{1}\right\},\left\{x_{3}\right\},\left\{x_{1}, x_{3}\right\}\right\} \\
& D\left(x_{3}\right)=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}
\end{aligned}
$$

## Local Čech-Picard complex

Our new favourite example: $x_{1}+x_{2}+x_{3}=\infty$

$$
\begin{aligned}
\operatorname{Spec}^{\circ} \triangle=\{ & \left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\} \\
& \left.\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$



Covered by

$$
\begin{aligned}
& D\left(x_{1}\right)=\left\{\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& D\left(x_{2}\right)=\left\{\left\{x_{1}\right\},\left\{x_{3}\right\},\left\{x_{1}, x_{3}\right\}\right\} \\
& D\left(x_{3}\right)=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}
\end{aligned}
$$

Local invertibles

$$
\begin{aligned}
& \left(M_{x_{i}}\right)^{*}=\mathbb{Z} \\
& \left(M_{x_{i}, x_{j}}\right)^{*}=\mathbb{Z}^{2}
\end{aligned}
$$

$$
\text { for } 1 \leq i<j \leq 3
$$

## Local Čech-Picard complex

Our new favourite example: $x_{1}+x_{2}+x_{3}=\infty$

$$
\begin{aligned}
\operatorname{Spec}^{\circ} \triangle=\{ & \left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\} \\
& \left.\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$



Covered by

$$
\begin{aligned}
& D\left(x_{1}\right)=\left\{\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& D\left(x_{2}\right)=\left\{\left\{x_{1}\right\},\left\{x_{3}\right\},\left\{x_{1}, x_{3}\right\}\right\} \\
& D\left(x_{3}\right)=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}
\end{aligned}
$$

Local invertibles

$$
\begin{aligned}
& \left(M_{x_{i}}\right)^{*}=\mathbb{Z} \\
& \left(M_{x_{i}, x_{j}}\right)^{*}=\mathbb{Z}^{2} \\
& \quad \text { for } 1 \leq i<j \leq 3
\end{aligned}
$$

Čech Complex

$$
\begin{aligned}
0 \longrightarrow \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} & \longrightarrow \mathbb{Z}^{2} \times \mathbb{Z}^{2} \times \mathbb{Z}^{2} \longrightarrow 0 \\
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) & \left.\left.\longmapsto\left(-\alpha_{1}, \alpha_{2}\right),\left(-\alpha_{1}, \alpha_{3}\right)\right),\left(-\alpha_{2}, \alpha_{3}\right)\right)
\end{aligned}
$$

## Local Čech-Picard complex

Our new favourite example: $x_{1}+x_{2}+x_{3}=\infty$

$$
\begin{aligned}
\operatorname{Spec}^{\circ} \triangle=\{ & \left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\} \\
& \left.\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\}
\end{aligned}
$$



Covered by

$$
\begin{aligned}
& D\left(x_{1}\right)=\left\{\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{x_{2}, x_{3}\right\}\right\} \\
& D\left(x_{2}\right)=\left\{\left\{x_{1}\right\},\left\{x_{3}\right\},\left\{x_{1}, x_{3}\right\}\right\} \\
& D\left(x_{3}\right)=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{1}, x_{2}\right\}\right\}
\end{aligned}
$$

Local invertibles

$$
\begin{aligned}
& \left(M_{x_{i}}\right)^{*}=\mathbb{Z} \\
& \left(M_{x_{i}, x_{j}}\right)^{*}=\mathbb{Z}^{2}
\end{aligned}
$$

$$
\text { for } 1 \leq i<j \leq 3
$$

Čech Complex

$$
\begin{aligned}
& 0 \longrightarrow \\
& \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}^{2} \times \mathbb{Z}^{2} \times \mathbb{Z}^{2} \longrightarrow 0 \\
&\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\left.\left(\left(-\alpha_{1}, \alpha_{2}\right),\left(-\alpha_{1}, \alpha_{3}\right)\right),\left(-\alpha_{2}, \alpha_{3}\right)\right)
\end{aligned}
$$

$$
\check{\mathrm{H}}^{0}\left(\triangle, \mathcal{O}^{*}\right)=0
$$

$$
\check{\mathrm{H}}^{1}\left(\triangle, \mathcal{O}^{*}\right)=\mathbb{Z}^{3}
$$

## Vect $_{1}$ in case $x_{1}+x_{2}+x_{3}=\infty$

We have an explicit description of
$\operatorname{Pic}(X)$ in our new favourite case
A line bundle $V$ is locally

$$
V_{x_{i}} \cong M_{x_{i}} \cong\left\langle e_{i}\right\rangle
$$

## Vect $_{1}$ in case $x_{1}+x_{2}+x_{3}=\infty$

We have an explicit description of $\operatorname{Pic}(X)$ in our new favourite case

A line bundle $V$ is locally

$$
V_{x_{i}} \cong M_{x_{i}} \cong\left\langle e_{i}\right\rangle
$$

On the intersection $D\left(x_{i}, x_{j}\right)$ we have

$$
\begin{aligned}
e_{i} & =e_{j}+b_{i j} \\
e_{j} & =e_{i}+b_{j i}
\end{aligned}
$$

Easy computations $\rightarrow$ obtain three relations

$$
\begin{aligned}
& e_{1}+\alpha_{12} x_{2}=e_{2}+\alpha_{21} x_{1} \\
& e_{1}+\alpha_{13} x_{3}=e_{3}+\alpha_{31} x_{1} \\
& e_{2}+\alpha_{23} x_{3}=e_{3}+\alpha_{32} x_{3}
\end{aligned}
$$

## Vect $_{1}$ in case $x_{1}+x_{2}+x_{3}=\infty$

We have an explicit description of
$\operatorname{Pic}(X)$ in our new favourite case
A line bundle $V$ is locally

$$
V_{x_{i}} \cong M_{x_{i}} \cong\left\langle e_{i}\right\rangle
$$

On the intersection $D\left(x_{i}, x_{j}\right)$ we have

$$
\begin{aligned}
e_{i} & =e_{j}+b_{i j} \\
e_{j} & =e_{i}+b_{j i}
\end{aligned}
$$

Easy computations $\rightarrow$ obtain three relations

$$
e_{i}+\alpha_{i j} x_{j}=e_{j}+\alpha_{j i} x_{i}
$$

$$
\begin{aligned}
& M=\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{2}+x_{3}\right.=\infty) \\
& S=\left(e_{1}, e_{2}, e_{3} \mid \quad\right. e_{1}+\alpha_{12} x_{2} \\
&\left.e_{1}+e_{13} x_{3}+\alpha_{21} x_{1}\right) \\
& e_{2}+\alpha_{23} x_{3}=e_{3}+\alpha_{31} x_{1} \\
& e_{32} x_{3}
\end{aligned}
$$

Up to isomorphism this 6 parameters $\alpha_{i j}$ give us $\mathbb{Z}^{3}$ possibilities.

## Vect $_{1}$ in case $x_{1}+x_{2}+x_{3}=\infty$

We have an explicit description of
$\operatorname{Pic}(X)$ in our new favourite case
A line bundle $V$ is locally

$$
V_{x_{i}} \cong M_{x_{i}} \cong\left\langle e_{i}\right\rangle
$$

On the intersection $D\left(x_{i}, x_{j}\right)$ we have

$$
\begin{aligned}
e_{i} & =e_{j}+b_{i j} \\
e_{j} & =e_{i}+b_{j i}
\end{aligned}
$$

Easy computations $\rightarrow$ obtain three relations

$$
e_{i}+\alpha_{i j} x_{j}=e_{j}+\alpha_{j i} x_{i}
$$

$$
\left.\left.\begin{array}{rl}
M=\left(x_{1}, x_{2}, x_{3} \mid x_{1}+x_{2}+x_{3}\right. & =\infty) \\
S=\left(e_{1}, e_{2}, e_{3} \mid\right. & e_{1}+\alpha_{12} x_{2}
\end{array}=e_{2}+\alpha_{21} x_{1}\right)\right) . \begin{aligned}
& e_{1}+\alpha_{13} x_{3} \\
& e_{2}+e_{23} x_{3}=\alpha_{31} x_{1} \\
& e_{3}+\alpha_{32} x_{3}
\end{aligned}
$$

They are the all and only such $M$-sets. Group with $\wedge_{M}$.

Up to isomorphism this 6 parameters $\alpha_{i j}$ give us $\mathbb{Z}^{3}$ possibilities.

## Link complices and main result

Let $\triangle$ be a simplicial compex and $F \in \triangle$ one of its faces.

The link of $F$ in $\triangle$ is
$\mathrm{lk}_{\triangle}(F):=\{G \in \triangle \mid F \cap X=\varnothing, F \cup G \in \triangle\}$

## Link complices and main result

Let $\triangle$ be a simplicial compex and $F \in \triangle$ one of its faces.


The link of $F$ in $\triangle$ is
$\mathrm{lk}_{\Delta}(F):=\{G \in \triangle \mid F \cap X=\varnothing, F \cup G \in \triangle\}$

## Link complices and main result

Let $\triangle$ be a simplicial compex and $F \in \triangle$ one of its faces.

$$
F=\{1\} \in \triangle
$$

The link of $F$ in $\triangle$ is
$\mathrm{lk}_{\Delta}(F):=\{G \in \triangle \mid F \cap X=\varnothing, F \cup G \in \triangle\}$
$\mathrm{lk}_{\Delta}(F)=\{\varnothing$
$\{2\},\{3\}\}$

## Link complices and main result

Let $\triangle$ be a simplicial compex and $F \in \triangle$ one of its faces.


The link of $F$ in $\triangle$ is
$\mathrm{lk}_{\triangle}(F):=\{G \in \triangle \mid F \cap X=\varnothing, F \cup G \in \triangle\}$

$$
F=\{1\} \in \triangle
$$

Theorem (A. 2014). The cohomology of the local Čech-Picard complex of $\triangle$ can be computed with the following formulas $\mathrm{H}^{0}\left(\triangle, \mathcal{O}^{*}\right)=\mathbb{Z}^{\#\{0-\operatorname{dim} \text { facets of } \Delta\}}$
$\mathrm{H}^{1}\left(\triangle, \mathcal{O}^{*}\right)=\mathbb{Z}^{\left(\sum r_{v_{i}}\right)-\#\{0-\operatorname{dim} \text { non-facets of } \triangle\}}$
$\mathrm{H}^{j}\left(\triangle, \mathcal{O}^{*}\right)=\bigoplus_{\mathrm{O}_{i}} \mathrm{H}^{j-1}\left(\mathcal{C}_{\mathrm{lk}_{\Delta}\left(v_{i}\right)}\right)$

- $\mathcal{C}_{\mathrm{lk}_{\Delta}\left(v_{i}\right)}:=\mathcal{C}^{\bullet}\left(\mathrm{lk}_{\Delta}\left(v_{i}\right), \mathbb{Z}\right)$
- $r_{v_{i}}=\operatorname{rk}\left(\mathrm{H}^{0}\left(\mathcal{C}_{\mathrm{lk}_{\Delta}\left(v_{i}\right)}^{\bullet}\right)\right)$
- $j \geq 2$


## Conjectures and Corollaries

$\mathrm{H}^{0}$ and $\mathrm{H}^{1}$ are always free groups
in the simplicial case

## Conjectures and Corollaries

$\mathrm{H}^{0}$ and $\mathrm{H}^{1}$ are always free groups in the simplicial case

## TRUE



## Conjectures and Corollaries

$\mathrm{H}^{0}$ and $\mathrm{H}^{1}$ are always free groups in the simplicial case

TRUE
$\mathrm{H}^{j}$ always torsion free

## Conjectures and Corollaries

$\mathrm{H}^{0}$ and $\mathrm{H}^{1}$ are always free groups TRUE in the simplicial case

FALSE $\quad H^{j}$ always torsion free

## Conjectures and Corollaries

$\mathrm{H}^{0}$ and $\mathrm{H}^{1}$ are always free groups TRUE in the simplicial case

## FALSE $\quad \mathrm{H}^{j}$ always torsion free

Minimal example w/ torsion cohomology has 7 vertices ( $\mathbb{P}_{\mathbb{R}}^{2}+$ one vertex)

## Conjectures and Corollaries

$\mathrm{H}^{0}$ and $\mathrm{H}^{1}$ are always free groups in the simplicial case

## TRUE

## FALSE <br> $\mathrm{H}^{j}$ always torsion free

Minimal example w/ torsion cohomology has 7 vertices $\left(\mathbb{P}_{\mathbb{R}}^{2}+\right.$ one vertex $)$

In the case $x_{1}+\cdots+x_{n}=\infty$ we have

$$
\begin{array}{rc}
\mathrm{H}^{j}=\left\{\begin{array}{rc}
\mathbb{Z}^{n} & \text { if } j=n-2 \\
0 & \text { otherwise }
\end{array} \quad\right. \text { TRUE }
\end{array}
$$

## Conjectures and Corollaries

$\mathrm{H}^{0}$ and $\mathrm{H}^{1}$ are always free groups in the simplicial case

## TRUE

## FALSE

$\mathrm{H}^{j}$ always torsion free

Minimal example w/ torsion cohomology has 7 vertices ( $\mathbb{P}_{\mathbb{R}}^{2}+$ one vertex)

In the case $x_{1}+\cdots+x_{n}=\infty$ we have

$$
\begin{array}{rc}
\mathrm{H}^{j}=\left\{\begin{array}{rc}
\mathbb{Z}^{n} & \text { if } j=n-2 \\
0 & \text { otherwise }
\end{array} \quad\right. \text { TRUE }
\end{array}
$$

We can use these results in more general cases and/or to study the Pic ${ }^{\text {loc }}$ of the Stanley-Reisner ring

## Bibliography

B. Batushk Hilbert-Kunz theory for binoids
S. Böttger Monoids with absorbing elements and their associated algebras
W. Bruns, J. Herzog Cohen-Macaulay Rings
G. Cortiñas, C. Haesemeyer, M. E. Walker, C. Weibel Toric Varieties, Monoid Schemes and cdh Descent
A. Deitmar Schemes over $\mathbb{F}_{1}$
D. Eisenbud, J. Harris The Geometry of Schemes
D. Eisenbud, B. Sturmfels Binomial Ideals
J. Flores, C. Weibel Picard groups and Class groups of Monoid Schemes
R. Hartshorne Algebraic Geometry
A. Hatcher Algebraic Topology
J. López Peña, O. Lorscheid Mapping $\mathbb{F}_{1}$-land: an overview of geometries over the field with one element
E. Miller, B. Sturmfels Combinatorial Commutative Algebra
I. Pirashvili On Cohomology and vector bundles over monoid schemes

## Thank You

