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The membrane potential

00 55 1010 1515

-0
.7

-0
.7

-0
.6

-0
.6

-0
.5

-0
.5

-0
.4

-0
.4

-0
.3

-0
.3

time [s]time [s]

M
em
br
an
e
P
ot
en
tia
l[
V
]

M
em
br
an
e
P
ot
en
tia
l[
V
]



Classical Integrate–and–fire models (IF)

Stochastic IF neuronal models are characterised by the following features:

the stochastic process that describes the membrane potential between two

consecutive spikes

the firing mechanism that produces the action potential (not included in the model)

the resetting condition
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The membrane potential stochastic process

The membrane potential is described as a stochastic process

continuos time but discrete states (Stein’s model)

continuous time and continuous states, i.e. a diffusion process

dVt = a(t, Vt) dt+ b(t, Vt)dWt, V0 = v0
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The firing mechanism

The firing mechanism is usually described as a first passage time

T = inf {t > 0 : Vt ≥ S} , v0 < S

Remarks:

the threshold S is a firing threshold

no spike, no crossing of the threshold

the threshold level is the maximum depolarisation achieved between two spikes
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The resetting condition

The membrane potential process is reset to the resetting value

Remark:

after resetting the process starts from scratch

if we reset both time and space the sequence of interspike intervals is a random

sample drawn from T

... and the spike train is a renewal point process
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From the visual inspection of traces natural candidates for the threshold and the

resetting value can be located
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The point

The model is misspecified!

the membrane potential may cross the threshold several times before firing

the threshold cannot be considered constant
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The new firing time

Let the cell fire as its membrane potential reaches the threshold level S and

constantly remains above this level for a time interval equal to a fixed

constant ∆

ΔΔ

HH

SS

gt t

H = inf{t : 1Vt≥S · (t− gt) ≥ ∆}
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The new firing time: the perfect integrator

In the case of the perfect integrator, i.e. the membrane potential process is a

Wiener process

dVt = µdt+ σdWt, V0 = 0

we can derive the Laplace transform

E
(

e−λH
)



The new firing time: the perfect integrator

In the case of the perfect integrator, i.e. the membrane potential process is a

Wiener process

dVt = µdt+ σdWt, V0 = 0

we can derive the Laplace transform

E
(

e−λH
)



The new firing time: the leaky integrator

In the case of the leaky integrator, i.e. the membrane potential process is an

Ornstein Uhlenbeck process

dVt =

(
−Vt
τ

+ µ

)
dt+ σdWt, V0 = 0

we are still working in the framework of the general excursion theory.
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