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Aims



Network connections
Neural network ⇐ interactions between neurons and/or common stimula:

direct
indirect

We need statistical tools to recognize and distinguish such interactions



Aims
1. How to guess existence of connections in the network?



Aims
2. How to detect dependences between Interspike Intervals?
We need statistical methods to recognize dependent ISIs
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Copulas

Definition
A two-dimensional copula is a function C : [0, 1]2 → [0, 1] with the
following properties:
1. C (u; 0) = C (0; v) = 0 and C (u; 1) = u,C (1; v) = v for every

u, v ∈ [0; 1];
2. C is 2-increasing, i.e. for every u1, u2, v1, v2 ∈ [0; 1] such that

u1 ≤ u2, v1 ≤ v2,

C (u1, v1) + C (u2, v2)− C (u1, v2)− C (u2, v1) ≥ 0

Remark
C is a 2− dimensional copula if C is a joint cumulative distribution
function of a 2− dimensional vector on the square [0, 1]2 with uniform
marginals



Copulas distribution and Copulas densities



Sklar Theorem
Theorem
Let F be a two-dimensional distribution function with margins F1 and F2.
Then F has a copula representation:

P(X1 < x1;X2 < x2) = F (x1; x2) = C (F1(x1);F2(x2))

The copula C is unique if the margins are continuous. (Otherwise, only
the subcopula is uniquely determined on RanF1 × RanF2.)



Copulas

Remark
The copula of independent random variables is C (u, v) = uv and its
scatterplot is uniform on [0; 1]2

Remark
Consider a random vector X1,X2. Suppose its margins are continuos with
marginals Fi (x) = P(X1 < x). Applying the probability integral
transform, the random vector (U1,U2) = (F1(X1),F2(X2)) has uniformly
distributed marginals. The copula C is defined as the joint cumulative
distribtion function of U1,U2.



Copula

Why to use copulas?
They catch the joint dependence between r.v.s, separating it from
the marginal behaviors.
Scale free: invariance under strictly increasing transformations.
They can model independence as well as dependence.
Measures of dependence, in particular Kendall’s τ can be expressed
as:

τ = 4
∫ 1

0

∫ 1

0
C (u, v)dC (u, v)− 1 = 4E[C (u, v)]− 1 ∈ [−1, 1]



Copulas allow to build models with assigned dependence properties



Copulas: a tool to investigate neural networks structure



Bivariate dependencies

Dependency between an ISI of neuron A and the k-th ISI of neuron B
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Copulas to detect dependencies

Hypothesis: underlying renewal process
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The method

Select a reference neuron. 1

Consider sample pairs(
T i

A, θ
i +

m∑
k=1

T (ik)
B

)
, i = 1, . . . ,N, k = 1, . . . ,M.

Determine their empirical copula and/or the copula scatterplot.
Test their independence.
Exchange the role of reference neuron and repeat the analysis.

1M. Tamborrino,C. Zucca Brain Research, 2011



Models for data generation

We consider two models of the membrane potential evolution:
jump diffusion processes (direct dependence*);
correlated diffusion processes (indirect dependence**).

Different types of interactions
⇓

different copulas.

2

2* LS, C. Zucca Math. Biosciences, 2013; LS, R. Sirovich, A.E.P. Villa, Math.
Biosc. for Eng. 2014
**M. Tamborrino, LS, M. Jacobsen, Physica D, 2014



Jump diffusion model

X(t) = {(X1,X2)(t); t ≥ t0}: two dimensional jump diffusion process.
In absence of jumps, the MP of each neuron is modeled as an OU
process given by

dXi (t) =

(
−1
τ
Xi (t) + µi

)
dt + σidWi (t), (1)

where W1(t) and W2(t) are two standard Wiener processes with
Cov(W1(t),W2(t)) = 0.



Correlated diffusion model

X(t) = {(X1,X2)(t); t ≥ t0}: bivariate diffusion process with correlated
components.
The sub-threshold MP evolutions are described through an OU process
given by

dXi (t) =

(
−1
τ
Xi (t) + µi

)
dt + σidWi (t), (2)

where Cov(W1(t),W2(t)) = σ12t, with σ12 ∈ R.



Results: comparison I

Parameters: τ = 10 ms−1, C = 10mV , µA = µB = 1.2mVms−1,
σ2

A = σ2
B = 1.1mV 2ms−1

Jump amplitude h = 3 mV

Est. Kendall’s tau: τ̂I = 0.42

Cov(W1(t),W2(t)) = 0.91mV 2ms−1

Est. Kendall’s tau: τ̂I = 0.16
Copula scatterplots of (TA, θ), where TA and TB have the same
distribution (KS test).



Results for covariance diffusion model I

Parameters: τ = 10 ms−1, C = 10mV , µA = µB = 1.2mVms−1,
σ2

A = σ2
B = 1.1mV 2ms−1 Cov(W1(t),W2(t)) = 0.91mV 2ms−1

Estimated Kendall’s
tau:
τ̂I = 0.16
τ̂II = 0.30
τ̂III = 0.25
τ̂IV = 0.22
τ̂V = 0.18
τ̂VI = 0.14.

Copula scatterplots of (TA, θ +
∑m

k=1 T
(k)
B ), for m = 0, 1, 2, 3, 5, 10,

where TA and TB have the same distribution (KS test).
m = 1: optimal value maximizing the dependency between the involved
times.



Results for jump diffusion model I

Parameters: τ = 10 ms−1, C = 10mV , µA = µB = 1.2mVms−1,
σ2

A = σ2
B = 1.1mV 2ms−1, jump amplitude h = 3 mV

Estimated Kendall’s
tau:
τ̂I = 0.42
τ̂II = 0.20
τ̂III = 0.15
τ̂IV = 0.12
τ̂V = 0.10
τ̂VI = 0.07.

Copula scatterplots of (TA, θ +
∑m

k=1 T
(k)
B ), for m = 0, 1, 2, 3, 5, 10,

m = 0: optimal value (maximizes the dependency).
Exchange the role of A and B to get hits on the type of structure
underlying the dependence.



Results for Jump-Diffusion Model II

Remark
Higher values of τ increase synchronous spiking.



Results for covariance diffusion model II

Choice of B as target neuron.

Estimated Kendall’s
tau:
τ̂I = 0.27
τ̂II = 0.22
τ̂III = 0.18.

Copula scatterplots of (TB , θ +
∑m

k=1 T
(k)
A ), for m = 0, 1, 2

m = 0: optimal value maximizing the dependency between the involved
times.



Why to use copulas instead of times
Scatterplots and 3-D histograms for times and copulas.

Time scatterplot:
easily recognize synchronous spikes (straight line)
informations on the marginal behavior
merge marginal and joint behaviors (main limit!) hard to distinguish
meaningful clusters



An alternative tool to detect dependences: Mutual Information



Mutual Information between two Random Variables

Definition
The mutual information (MI) of a 2-dimensional random vector
X = (X1,X2) is given by

MI (X1,X2) =

∫
R2

f1,2(x1, x2) log2

[
f1,2(x1, x2)

f1(x1)f2(x2)

]
dx1dx2. (3)

Remark
If X1 and X2 are independent MI (X1,X2) = 0.
MI and entropy in the case d = 2 are related through the well known
equation

MI (X1,X2) = H(X1) + H(X2)− H(X1,X2). (4)



Copulas and Mutual Information

Theorem
(Jenison Reale, 2004) Let U1 = F1(X1) and U2 = F2(X2). The MI (3) of
the 2-dimensional random vector X = (X1,X2) can be obtained as

MI (X1,X2) = −H (U1,U2) (5)

Remark
Entropy of the copula coincides with the mutual information between the
random variables!



Estimation of MI

IDEA: Use the relationship between MI and copula to estimate the
Mutual Information:

transform the original sample in a new sample with uniform
marginals through U1 = F (X1),U2 = F (X2);
Estimate the entropy of the obtained sample;

Problem
Extension to the d− dimensional case



Estimation of MI

IDEA: Use the relationship between MI and copula to estimate the
Mutual Information:

transform the original sample in a new sample with uniform
marginals through U1 = F (X1),U2 = F (X2);
Estimate the entropy of the obtained sample;

Problem
Extension to the d− dimensional case



Mutual Information between d Random Variables

The generalization of MI to more than two random variables is not
unique: definitions change according to different grouping of the
components of the random vector X = (X1, . . . ,Xd).

Definition
(couple of multi-indices) For any couple of multi-indices (α, β) of
dimensions h and k respectively, with h + k = d and partitioning the set
of indices {1, 2, . . . , d}, the MI (X1, . . . ,Xd) can be defined as

MI (Xα,Xβ) =

∫
fα,β log2

fα,β
fαfβ

(6)

=

∫
Rd

fd(x1, . . . , xd) log2

[
fd(x1, . . . , xd)

fα(xα1 , . . . , xαh )fβ(xβ1 , . . . , xβk )

]
dx1 . . . dxd .

where Xα = (Xα1 , . . . ,Xαh ) and Xβ = (Xβ1 , . . . ,Xβk ).



Mutual Information between d Random Variables

Definition
For any n multi-indices (α1, . . . , αn) of dimensions h1, . . . , hn
respectively, such that h1 + · · ·+ hn = d and partitioning the set of
indices {1, 2, . . . , d} the following quantities

MI(Xα1 , . . . ,Xαn ) =
∫
Rd fα1,...,αn log2

fα1,...,αn

fα1 ···fαn (7)

=
∫
Rd f1,...,d(x1, . . . , xd)×

log2

[
f1,...,d(x1, . . . , xd)

fα1
1,...,α

1
h1

(xα1
1
, . . . , xα1

h1
) · · · fαn

1 ,...,α
n
hn

(xαn
1
, . . . , xαn

hn
)

]
dx1 . . . dxd

are all d–dimensional extensions of the bidimensional MI.



Mutual Information and Entropy

Remark
The d−dimensional MI can be expressed as a sum of Entropies

MI (Xα1 , . . . ,Xαn ) = H(Xα1) + · · ·+ H(Xαn )− H(X1, . . . ,Xd). (8)

Remark
Reliable statistical estimators for the entropy are available but their use
to estimate MI in (7) is discouraged by the presence of a sum of entropy
terms (the variances of the sums add up!)



d−dimensional copulas and MI

Remark
It is not possible to use copula functions to handle multivariate
distribution with given marginal distributions of general dimensions. The
only copula compatible with any assigned multidimensional
marginal distributions is the independent one.
A generalization of the copula concept is necessary to deal with
conditional distributions.



Linkage Functions

Definition
The linkage function corresponding to the d -dimensional random vector
(Xα1 , . . . ,Xαn ) is defined as the joint p.d.f. L of the vector (Uα1 . . . ,Uαn )

(Uα1
1
, . . . ,Uα1

h1
, . . . ,Uαn

1
, . . . ,Uαn

hn
) = (Ψα1(Xα1), . . . ,Ψαn (Xαn )) . (9)

where
Ψαi : Rhi → [0, 1]hi , i = 1, . . . , n with Ψαi (xαi

1
, . . . , xαi

hi
) =

(Fαi
1
(xαi

1
),Fαi

2|αi
1
(xαi

2
|xαi

1
), . . . ,Fαi

hi
|αi

1,...,α
i
hi−1

(xαi
hi
|xαi

1
, . . . , xαi

hi−1
));

(α1, . . . , αn) multi-indices of dimensions (h1, . . . , hn) respectively,
such that h1 + · · ·+ hn = d partitioning the set {1, 2, . . . , d};
Fαi , i = 1, . . . , n: hi -dimensional c.d.f. of Xαi = (Xαi

1
, . . . ,Xαi

hi
)

Fα1,...,αn : d−dimensional joint c.d.f. of Xα1 , . . . ,Xαn .



Linkage Functions and MI

Theorem
(Li, H.; Scarsini, M.; Shaked, M.,1996) The vectors

Uαi = (Uαi
1
, . . .Uαi

hi
) = Ψαi (Xαi

1
, . . . ,Xαi

hi
) = Ψαi (Xαi ) (10)

are hi -dimensional vectors of independent uniform [0, 1] random variables.

Theorem
Let X = (X1, . . . ,Xd) be a d–dimensional random vector. For any n
multi-indices (α1, . . . , αn) of dimensions (h1, . . . , hn) respectively, such
that h1 + · · ·+ hn = d and partitioning the set of indices {1, 2, . . . , d}, it
holds

MI (Xα1 , . . . ,Xαn ) = −H(Uα1 , . . . ,Uαn ), (11)

where (Uα1 , . . . ,Uαn ) = (Ψα1(Xα1), . . . ,Ψαn (Xαn )).



The Method

IDEA: Estimate the MI (Xα1 , . . . ,Xαn ), with the elements of the vector
(X1, . . . ,Xd) grouped according to the multi–indices (α1, . . . , αn), as the
Shannon entropy in eq. (11). 3 The random vector (Uα1 , . . . ,Uαn ) is
obtained from (X1, . . . ,Xd) by means of the following transformations:

Uα1
1

= Fα1
1
(Xα1

1
)
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2
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1
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2
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...
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h1
= Fα1

h1
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1,α
1
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1
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h1
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1
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2
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h1−1
)

Uα2
1

= Fα2
1
(Xα2

1
)

...
Uαn

1
= Fαn

1
(Xαn

1
)

...
Uαn

hn
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hn
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, . . . ,Xαn
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).

(12)

3MT Giraudo, LS, R. Sirovich Entropy, 2014



The estimation algorithm
1 Estimate the conditional c.d.f.’s in eq. (12). Denote these functions

as Ψ̂αi = (F̂αi
1
, F̂αi

2|αi
2
, . . . , F̂αi

hi
|αi

hi−1
), for i = 1, . . . , n;

2 For k = 1, . . . ,N calculate Uk = (Uk
α1 , . . . ,Uk

αn ), where
Uk
αi = (Ψ̂α1(X k

α1), . . . , Ψ̂αn (X k
αn )), for i = 1, . . . , n;

3 Estimate the MI (Xα1 , . . . ,Xαn ) as the Shannon entropy in eq. (11)
of the transformed sample (U1, . . . ,UN).

Remark
For the particular case when d = 2 the procedure becomes the following:

1 estimate the c.d.f.’s U1 = F1(X1),U2 = F2(X2). Denote the
estimated functions as (F̂1, F̂2);

2 calculate Uk = (F̂1(X k
1 ), F̂2(X k

2 )), for k = 1, . . . ,N;
3 estimate MI (X1,X2) as the Shannon entropy in eq. (5) of the

transformed sample (U1, . . . ,UN).



A second application



Problem 2: Dependencies between ISIs



A model for data generation: two compartment model.
4

4* E. Benedetto, LS, Biol Cyb. 2014.



Dependence between ISIs
Marginals can be computed solving a new integral equation 5

5E. Benedetto, LS, C Zucca, J. Comp. Appl. Math. 2012



The copula methods

Problem 1:
non parametric method (only request iid ISIs)
recognizes the duration of the effect of a coupling phenomenon
through the investigation of m
recognizes the presence of similar underlying dynamics for the
membrane potential when the copula scatterplots or densities have
similar shapes
allows to detect the presence of a delay in the coupling
it might be extended to capture dependencies in triplets, quartets,
etc.

Problem 2
allows to determine the presence of dependence between identically
distributed ISIs
in some cases allows to specify the dependence structure



Thank you for your attention


