Copulas: a useful tool for neurosciences?

Laura Sacerdote

Department of Mathematics *G. Peano* University of Torino Italy

Torino-Juelich Workshop on Computational Neuroscience. Torino April 17, 2015

◆□▶ ◆□▶ ◆□▶ ◆□▶

590

Aims

Network connections

Neural network \leftarrow interactions between neurons and/or common stimula:

- direct
- indirect

Aims

1. How to guess existence of connections in the network?

Aims

2. How to detect dependences between Interspike Intervals? We need statistical methods to recognize dependent ISIs

SUMMARY

Copulas

• Problem 1: Guessing about network structure

- A first approach: forward times dependences
 - Models for Data Simulation
 - Results
- A second approach: Mutual Information
 - Mutual Information Estimation and Copulas
- Problem 2: Dependence between interspike intervals in a single spike train

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Models for data generation
- Copulas and dependence detection: Results

Copulas

Definition

A two-dimensional copula is a function $C : [0,1]^2 \rightarrow [0,1]$ with the following properties:

- 1. C(u; 0) = C(0; v) = 0 and C(u; 1) = u, C(1; v) = v for every $u, v \in [0; 1]$;
- 2. C is 2-increasing, i.e. for every $u_1, u_2, v_1, v_2 \in [0; 1]$ such that $u_1 \le u_2, v_1 \le v_2$,

$$C(u_1, v_1) + C(u_2, v_2) - C(u_1, v_2) - C(u_2, v_1) \ge 0$$

Remark

C is a 2- dimensional copula if C is a joint cumulative distribution function of a 2- dimensional vector on the square $[0,1]^2$ with uniform marginals

Copulas distribution and Copulas densities

Copulas cumulative distribution

Copulas probability densities

Sklar Theorem

Theorem

Let F be a two-dimensional distribution function with margins F_1 and F_2 . Then F has a copula representation:

$$P(X_1 < x_1; X_2 < x_2) = F(x_1; x_2) = C(F_1(x_1); F_2(x_2))$$

The copula C is unique if the margins are continuous. (Otherwise, only the subcopula is uniquely determined on $RanF_1 \times RanF_2$.)

Sklar theorem The 3 functions: 1. marginal respect to X₁ 2. marginal respect to X₂ 3. The copula Uniquely determine the joint distribution

Copulas

Remark

The copula of independent random variables is C(u, v) = uv and its scatterplot is uniform on $[0; 1]^2$

Remark

Consider a random vector X_1, X_2 . Suppose its margins are continuos with marginals $F_i(x) = P(X_1 < x)$. Applying the probability integral transform, the random vector $(U_1, U_2) = (F_1(X_1), F_2(X_2))$ has uniformly distributed marginals. The copula C is defined as the joint cumulative distribution function of U_1, U_2 .

・ロト ・御 と ・ ヨ と ・ ヨ と

San

Copula

Why to use copulas?

- They catch the joint dependence between r.v.s, separating it from the marginal behaviors.
- Scale free: invariance under strictly increasing transformations.
- They can model independence as well as dependence.
- Measures of dependence, in particular Kendall's τ can be expressed as:

$$\tau = 4 \int_0^1 \int_0^1 C(u, v) dC(u, v) - 1 = 4 \mathbb{E}[C(u, v)] - 1 \in [-1, 1]$$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Copulas allow to build models with assigned dependence properties

Copulas: a tool to investigate neural networks structure

(ロ)、(型)、(E)、(E)、 E のQで

Bivariate dependencies

Dependency between an ISI of neuron A and the k-th ISI of neuron B

$$P\left(T_{A}^{(1)} < t, \sum_{i=1}^{k} T_{B}^{(i)} < s
ight)$$

 $P\left(T_{A}^{(1)} < t, T_{B}^{(k)} < s
ight)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Copulas to detect dependencies

Hypothesis: underlying renewal process

$$P\left(T_{A}^{(1)} < t, \theta + \sum_{i=1}^{k} T_{B}^{(i)} < s\right) = C\left(F_{T_{A}^{(1)}}(t), F_{\theta + \sum_{i=1}^{k} T_{B}^{(i)}}(s)\right)$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The method

- Select a reference neuron. ¹
- Consider sample pairs

$$\left(T_A^i, \theta^i + \sum_{k=1}^m T_B^{(ik)}\right), \qquad i = 1, \dots, N, \qquad k = 1, \dots, M.$$

- Determine their empirical copula and/or the copula scatterplot.
- Test their independence.
- Exchange the role of reference neuron and repeat the analysis.

Models for data generation

We consider two models of the membrane potential evolution:

- jump diffusion processes (direct dependence*);
- correlated diffusion processes (indirect dependence**).

Different types of interactions $\$ different copulas.

2

^{2*} LS, C. Zucca Math. Biosciences, 2013; LS, R. Sirovich, A.E.P. Villa, Math. Biosc. for Eng. 2014 **M. Tamborrino, LS, M. Jacobsen, Physica D, 2014

Jump diffusion model

 $\mathbf{X}(t) = \{(X_1, X_2)(t); t \ge t_0\}$: two dimensional jump diffusion process. In absence of jumps, the MP of each neuron is modeled as an OU process given by

$$dX_i(t) = \left(-\frac{1}{\tau}X_i(t) + \mu_i\right)dt + \sigma_i dW_i(t), \tag{1}$$

where $W_1(t)$ and $W_2(t)$ are two standard Wiener processes with $Cov(W_1(t), W_2(t)) = 0$.

Correlated diffusion model

 $\mathbf{X}(t) = \{(X_1, X_2)(t); t \ge t_0\}$: bivariate diffusion process with correlated components.

The sub-threshold MP evolutions are described through an OU process given by

$$dX_i(t) = \left(-\frac{1}{\tau}X_i(t) + \mu_i\right)dt + \sigma_i dW_i(t),$$
(2)

500

where $Cov(W_1(t), W_2(t)) = \sigma_{12}t$, with $\sigma_{12} \in \mathbb{R}$.

Results: comparison I

Parameters:
$$\tau = 10 \ ms^{-1}$$
, $C = 10 mV$, $\mu_A = \mu_B = 1.2 mVms^{-1}$,
 $\sigma_A^2 = \sigma_B^2 = 1.1 mV^2 ms^{-1}$
Jump amplitude $h = 3 \ mV$ $Cov(W_1(t), W_2(t)) = 0.91 mV^2 ms^{-1}$

Est. Kendall's tau: $\hat{\tau}_I = 0.42$ Est. Kendall's tau: $\hat{\tau}_I = 0.16$ Copula scatterplots of (T_A, θ) , where T_A and T_B have the same distribution (KS test).

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Results for covariance diffusion model I

Parameters: $\tau = 10 \ ms^{-1}$, C = 10 mV, $\mu_A = \mu_B = 1.2 mVms^{-1}$, $\sigma_A^2 = \sigma_B^2 = 1.1 mV^2 ms^{-1} \ Cov(W_1(t), W_2(t)) = 0.91 mV^2 ms^{-1}$

Copula scatterplots of $(T_A, \theta + \sum_{k=1}^m T_B^{(k)})$, for m = 0, 1, 2, 3, 5, 10, where T_A and T_B have the same distribution (KS test). m = 1: optimal value maximizing the dependency between the involved times.

Results for jump diffusion model I

Parameters: $\tau = 10 ms^{-1}$, C = 10 mV, $\mu_A = \mu_B = 1.2 mVms^{-1}$, $\sigma_A^2 = \sigma_B^2 = 1.1 mV^2 ms^{-1}$, jump amplitude h = 3 mV

Sac

Copula scatterplots of $(T_A, \theta + \sum_{k=1}^m T_B^{(k)})$, for m = 0, 1, 2, 3, 5, 10, m = 0: optimal value (maximizes the dependency). Exchange the role of A and B to get hits on the type of structure underlying the dependence.

Results for Jump-Diffusion Model II

The estimated Kendall's tau are $\hat{\tau}_1 = 0.84, \hat{\tau}_{11} = 0.69, \hat{\tau}_{111} = 0.41$

Remark

Higher values of τ increase synchronous spiking.

Results for covariance diffusion model II

Choice of B as target neuron.

Why to use copulas instead of times Scatterplots and 3-D histograms for times and copulas.

Time scatterplot:

- easily recognize synchronous spikes (straight line)
- informations on the marginal behavior
- merge marginal and joint behaviors (main limit!) hard to distinguish meaningful clusters

Sac

An alternative tool to detect dependences: Mutual Information

Mutual Information between two Random Variables

Definition

The mutual information (MI) of a 2-dimensional random vector $X = (X_1, X_2)$ is given by

$$MI(X_1, X_2) = \int_{\mathbf{R}^2} f_{1,2}(x_1, x_2) \log_2 \left[\frac{f_{1,2}(x_1, x_2)}{f_1(x_1) f_2(x_2)} \right] dx_1 dx_2.$$
(3)

Remark

- If X_1 and X_2 are independent $MI(X_1, X_2) = 0$.
- *MI* and entropy in the case d = 2 are related through the well known equation

$$MI(X_1, X_2) = H(X_1) + H(X_2) - H(X_1, X_2).$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Copulas and Mutual Information

Theorem

(Jenison Reale, 2004) Let $U_1 = F_1(X_1)$ and $U_2 = F_2(X_2)$. The MI (3) of the 2-dimensional random vector $X = (X_1, X_2)$ can be obtained as

$$MI(X_1, X_2) = -H(U_1, U_2)$$
(5)

SQA

Remark

Entropy of the copula coincides with the mutual information between the random variables!

Estimation of MI

IDEA: Use the relationship between MI and copula to estimate the Mutual Information:

• transform the original sample in a new sample with uniform marginals through $U_1 = F(X_1), U_2 = F(X_2)$;

• Estimate the entropy of the obtained sample;

Estimation of MI

IDEA: Use the relationship between MI and copula to estimate the Mutual Information:

• transform the original sample in a new sample with uniform marginals through $U_1 = F(X_1), U_2 = F(X_2)$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Estimate the entropy of the obtained sample;

Problem

Extension to the *d*- dimensional case

Mutual Information between d Random Variables

The generalization of MI to more than two random variables is not unique: definitions change according to different grouping of the components of the random vector $X = (X_1, ..., X_d)$.

Definition

(couple of multi-indices) For any couple of multi-indices (α, β) of dimensions h and k respectively, with h + k = d and partitioning the set of indices $\{1, 2, \ldots, d\}$, the $MI(X_1, \ldots, X_d)$ can be defined as

$$MI(X_{\alpha}, X_{\beta}) = \int f_{\alpha, \beta} \log_2 \frac{f_{\alpha, \beta}}{f_{\alpha} f_{\beta}}$$
(6)

$$= \int_{\mathbf{R}^d} f_d(x_1, \dots, x_d) \log_2 \left[\frac{f_d(x_1, \dots, x_d)}{f_\alpha(x_{\alpha_1}, \dots, x_{\alpha_k}) f_\beta(x_{\beta_1}, \dots, x_{\beta_k})} \right] dx_1 \dots dx_d.$$

where $X_\alpha = (X_{\alpha_1}, \dots, X_{\alpha_k})$ and $X_\beta = (X_{\beta_1}, \dots, X_{\beta_k}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Mutual Information between d Random Variables

Definition

For any *n* multi-indices $(\alpha^1, \ldots, \alpha^n)$ of dimensions h_1, \ldots, h_n respectively, such that $h_1 + \cdots + h_n = d$ and partitioning the set of indices $\{1, 2, \ldots, d\}$ the following quantities

$$\begin{aligned} \mathsf{MI}(\mathsf{X}_{\alpha^{1}},\ldots,\mathsf{X}_{\alpha^{n}}) &= \int_{\mathsf{R}^{d}} f_{\alpha^{1},\ldots,\alpha^{n}} \log_{2} \frac{f_{\alpha^{1},\ldots,\alpha^{n}}}{f_{\alpha^{1}}\cdots f_{\alpha^{n}}}(7) \\ &= \int_{\mathsf{R}^{d}} f_{1,\ldots,d}(x_{1},\ldots,x_{d}) \times \end{aligned}$$

$$\log_2\left[\frac{f_{1,\ldots,d}(x_1,\ldots,x_d)}{f_{\alpha_1^1,\ldots,\alpha_{h_1}^1}(x_{\alpha_1^1},\ldots,x_{\alpha_{h_1}^1})\cdots f_{\alpha_1^n,\ldots,\alpha_{h_n}^n}(x_{\alpha_1^n},\ldots,x_{\alpha_{h_n}^n})}\right]dx_1\ldots dx_d$$

are all d-dimensional extensions of the bidimensional MI.

Mutual Information and Entropy

Remark

The d-dimensional MI can be expressed as a sum of Entropies

$$MI(X_{\alpha^{1}},\ldots,X_{\alpha^{n}})=H(X_{\alpha^{1}})+\cdots+H(X_{\alpha^{n}})-H(X_{1},\ldots,X_{d}).$$
 (8)

Remark

Reliable statistical estimators for the entropy are available but their use to estimate MI in (7) is discouraged by the presence of a sum of entropy terms (the variances of the sums add up!)

・ロト ・得ト ・ヨト ・ヨト

3

Sac

d-dimensional copulas and MI

Remark

It is not possible to use copula functions to handle multivariate distribution with given marginal distributions of general dimensions. **The only copula compatible with any assigned multidimensional marginal distributions is the independent one.** A generalization of the copula concept is necessary to deal with conditional distributions.

ション ふゆ く 山 マ チャット しょうくしゃ

Linkage Functions

Definition

The linkage function corresponding to the *d*-dimensional random vector $(X_{\alpha^1}, \ldots, X_{\alpha^n})$ is defined as the joint p.d.f. *L* of the vector $(U_{\alpha^1}, \ldots, U_{\alpha^n})$

$$(U_{\alpha_1},\ldots,U_{\alpha_{h_1}},\ldots,U_{\alpha_1},\ldots,U_{\alpha_{h_n}})=(\Psi_{\alpha^1}(X_{\alpha^1}),\ldots,\Psi_{\alpha^n}(X_{\alpha^n})).$$
 (9)

where

Linkage Functions and MI

Theorem

(Li, H.; Scarsini, M.; Shaked, M., 1996) The vectors

$$U_{\alpha^{i}} = (U_{\alpha^{i}_{1}}, \dots, U_{\alpha^{i}_{h_{i}}}) = \Psi_{\alpha^{i}}(X_{\alpha^{i}_{1}}, \dots, X_{\alpha^{i}_{h_{i}}}) = \Psi_{\alpha^{i}}(X_{\alpha^{i}})$$
(10)

are h_i -dimensional vectors of independent uniform [0, 1] random variables.

Theorem

Let $X = (X_1, ..., X_d)$ be a *d*-dimensional random vector. For any *n* multi-indices $(\alpha^1, ..., \alpha^n)$ of dimensions $(h_1, ..., h_n)$ respectively, such that $h_1 + \cdots + h_n = d$ and partitioning the set of indices $\{1, 2, ..., d\}$, it holds

$$MI(X_{\alpha^1},\ldots,X_{\alpha^n}) = -H(U_{\alpha^1},\ldots,U_{\alpha^n}), \qquad (11)$$

where $(U_{\alpha^1}, \ldots, U_{\alpha^n}) = (\Psi_{\alpha^1}(X_{\alpha^1}), \ldots, \Psi_{\alpha^n}(X_{\alpha^n})).$

The Method

IDEA: Estimate the $MI(X_{\alpha^1}, \ldots, X_{\alpha^n})$, with the elements of the vector (X_1, \ldots, X_d) grouped according to the multi-indices $(\alpha^1, \ldots, \alpha^n)$, as the Shannon entropy in eq. (11). ³ The random vector $(U_{\alpha^1}, \ldots, U_{\alpha^n})$ is obtained from (X_1, \ldots, X_d) by means of the following transformations:

$$\begin{pmatrix}
U_{\alpha_{1}^{1}} = F_{\alpha_{1}^{1}}(X_{\alpha_{1}^{1}}) \\
U_{\alpha_{2}^{1}} = F_{\alpha_{2}^{1}|\alpha_{1}^{1}}(X_{\alpha_{2}^{1}}|X_{\alpha_{1}^{1}}) \\
\vdots \\
U_{\alpha_{h_{1}}^{1}} = F_{\alpha_{h_{1}}^{1}|\alpha_{1}^{1},\alpha_{2}^{1},...,\alpha_{h_{1}-1}^{1}}(X_{\alpha_{h_{1}}^{1}}|X_{\alpha_{1}^{1}},X_{\alpha_{2}^{1}},...,X_{\alpha_{h_{1}-1}^{1}}) \\
U_{\alpha_{1}^{2}} = F_{\alpha_{1}^{2}}(X_{\alpha_{1}^{2}}) \\
\vdots \\
U_{\alpha_{1}^{n}} = F_{\alpha_{1}^{n}}(X_{\alpha_{1}^{n}}) \\
\vdots \\
U_{\alpha_{h_{n}}^{n}} = F_{\alpha_{h_{n}}^{n}|\alpha_{1}^{n},...,\alpha_{h_{n}-1}^{n}}(X_{\alpha_{h_{n}}^{n}}|X_{\alpha_{h_{1}}^{n}},...,X_{\alpha_{h_{n-1}}^{n}}).
\end{cases}$$
(12)

The estimation algorithm

- For k = 1, ..., N calculate $U^k = (U^k_{\alpha^1}, ..., U^k_{\alpha^n})$, where $U^k_{\alpha^i} = (\hat{\Psi}_{\alpha^1}(X^k_{\alpha^1}), ..., \hat{\Psi}_{\alpha^n}(X^k_{\alpha^n}))$, for i = 1, ..., n;
- Set Estimate the $MI(X_{\alpha^1}, \ldots, X_{\alpha^n})$ as the Shannon entropy in eq. (11) of the transformed sample (U^1, \ldots, U^N) .

Remark

For the particular case when d = 2 the procedure becomes the following:

- estimate the c.d.f.'s U₁ = F₁(X₁), U₂ = F₂(X₂). Denote the estimated functions as (Â₁, Â₂);
- **2** calculate $U^{k} = (\hat{F}_{1}(X_{1}^{k}), \hat{F}_{2}(X_{2}^{k}))$, for k = 1, ..., N;
- estimate MI(X₁, X₂) as the Shannon entropy in eq. (5) of the transformed sample (U¹,..., U^N).

A second application

Problem 2: Dependencies between ISIs

Identically distributed ISIs. Method:

- Test the value of τ of Kendall
- Test the uniform distribution of the copula between successive ISIs
- Best fit on specific distributions of the copula between successive ISIs

A model for data generation: two compartment model. $_{4}$

Dependence between ISIs

Marginals can be computed solving a new integral equation ⁵

The copula methods

- Problem 1:
 - non parametric method (only request iid ISIs)
 - recognizes the duration of the effect of a coupling phenomenon through the investigation of m
 - recognizes the presence of similar underlying dynamics for the membrane potential when the copula scatterplots or densities have similar shapes
 - allows to detect the presence of a delay in the coupling
 - it might be extended to capture dependencies in triplets, quartets, etc.
- Problem 2
 - allows to determine the presence of dependence between identically distributed ISIs

• in some cases allows to specify the dependence structure

Thank you for your attention

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○