On 1D, 2D and 3D spline quasi-interpolation

S. Remogna*
Department of Mathematics, University of Torino - ITALY

Miniworkshop
Advances in Numerical Analysis and Applications
Torino, March 30-31, 2015

*Joint work with C. Dagnino and P. Lamberti, Department of Mathematics,
University of Torino



Spline spaces

@ QcRY, d=123
@ A partition of Q

@ the domain Q is divided into a finite number of
sub-domains Dj, i = 1,...,N by the partition A



Spline spaces

@ QcRY, d=123
@ A partition of Q

@ the domain Q is divided into a finite number of
sub-domains Dj, i = 1,...,N by the partition A

Spline space
SH(Q,A) = {s € CHQ) | s o€ P(RY), i = 1,...,N}

s € S{'(Q2, A) is a piecewise polynomial of degree k with
order continuous (partial) derivatives in Q2
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Spline quasi-interpolants on bounded domains

A local spline quasi-interpolant (abbr. QI) of a function f has the
general form
Q:F—=S/(Q,4)

Qf = Z )\a(f)(ﬁaa

acA
where

@ {¢,, a € A} family of blending functions with compact
support forming a partition of unity

@ {)\,, a € A} family of local linear functionals defined on F,
expressed as linear combinations of values of f at some
points in a neighbourhood of supp ¢, N Q

@ Q exact on the space of polynomials of degree at most r
P (RY),i.e. Qp =p, Vp <P (RY), r <k

@ [If = Qf|lpq) = O(h™1), 1 < p < oo, f sufficiently smooth
function, h maximum of the diameters of elements of A
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Outline

1D QIs in spline spaces of degree k = 2, 3 and smoothness
k-1
@ Integral equations
2D - Qls in spaces of quadratic splines on criss-cross
triangulations

@ Approximation of derivatives

@ Error bounds for functions and derivatives
@ Construction of NURBS surfaces

@ Problems governed by PDEs

- QlIs in spaces of C2 cubic splines on uniform
Powell-Sabin triangulations

3D Qls in spaces of C? quartic splines on uniform type-6
tetrahedral partitions

@ Reconstruction of volumetric data
@ Numerical integration



1D SPLINE SPACES
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smoothness k — 1, SK74(Q, Ap)

@ bounded interval Q = [a, b]
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Univariate spline spaces of degree k = 2, 3 and

smoothness k — 1, SK74(Q, Ap)

@ bounded interval Q = [a, b]
@ uniform knot partition

An={Xk=...=X1=X%X=4a, Xi=a+ih, 1<i<
Nn—1 b=Xn=Xn11="...=Xpnik}-
a b
| | | | |
[ | [ [ |
Xo X1 -+ Xp—1 Xn
X_1 Xn+1
X1k Xnrk

n+k—1
° {Bj"(x)}. o basis of normalized B-splines defined on
J:

An, with supp Bj" = [Xj—k, Xj+1], spanning the spline space
SII((_l(Qa An)
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S p I I n e q U aS I = I nte r pO I atl n g p rOJ e CtO rS [Dagnino-Remogna-Sablonniere, 2014]

@ Spline quasi-interpolating projectors Py exact on Py (R),
k=2,3.
They are projectors, i.e. Pys = s, Vs € S'k“l(Q, Ap)

@ Quasi-interpolation nodes {t;,i =0, ...,2n}, with
to; = X;, i:O,...,n
1 .
tZiflzi(Xifl"{'Xi)a I=1,....n
a b
L ]

to t1 ot tn2ton-1  ton



Convergence properties

Py are uniformly bounded independently of the uniform partition

(2

For f(k+1) bounded, there holds
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Convergence properties

Py are uniformly bounded independently of the uniform partition

Theorem
For f(k+1) bounded, there holds

|<:

L k=2

S~

If = Pif[loe < Ch*Ff D) o with Cy = {
5 k = 3

((o]FN

The operator P, is superconvergent at the quasi-interpolation
nodes, i.e.

(f — Pof)(t) =0, for f € P3(R),
(f — P,f)(t}) = O(h*), for f such that ||f(4)| ., is bounded



I nteg ral eq Uatl OnS [Dagnino-Remogna-Sablonniere, 2014]

Linear Fredholm integral equations of the second kind
p—Tp=1,
with
b
S Tob) = [ K(y)oly)dy, xen
a

- € C(Q)
-KeC(2xQ)



The four projection methods

© Galerkin method — approximate equation
P — PkTPkpd = Pyt
@ Kantorovich method — approximate equation
PR = PT i = ¢
© Sloan’s iterated version — approximate equation
pn — TPkpp = ¢
@ Kulkarni’'s method — approximate equation

PR — (PLT + TP — P TP )k = 0



The approximate solutions

The approximate solution for each method is
n+k—1
© Galerkin method pj = Py + Y X|Bf
j=0
n+k—1
@ Kantorovich method pk& =+ + Z X Bjk
j=0

We have to solve a linear system and determine the unknowns
{Xj,j=0,...,n+k —1}.
© Sloan’s iterated version: it is obtained as an iterate of
Galerkin’s solution
n+k—1
pR=v+Ten = p=v+ > (NE)+X)TB,
j=0
{Xj, ] =0,...,n+k — 1} determined by Galerkin method



The approximate solutions

n+k—1 n4+k—1
O Kulkarni's method pf" = ¢+ »  XBf + ) Y,TBf
j=0 i—0

The problem has 2(n + k) unknowns — linear system of
2(n + k) equations

The system can be reduced to the solution of one system of
n + k algebraic equations.

First we determine {Y;, j =0,...,n+k — 1} by solving the
linear system, then we get {X;, j =0,...,n+k — 1}



Computation of the solutions

In order to construct the linear systems we have to evaluate
different kinds of integrals. For example
b
@ TBj(x) = / Bj(y)K(x,y)dy — suitable product

quadratureaformulas (PQF) with B-spline weight functions
b
) / K(tj,y)¥(y)dy — suitable Romberg’s quadrature

a
formula
b

o TBi(t) :/ K (t,y)B;(y)dy, with Bi(x) = TBi(x) -
a
suitable Romberg’s quadrature formula
{t,i =0,...,2n} are the QI nodes.



Convergence orders of the solutions

Theorem —case k = 2

Assume that the solution p has a bounded fourth derivative,
then there holds

lo— A8l =03, [l A2l = O(hd),
lp = P3lloe = O(N*), [|p = pi]| . = O(h")
Superconvergence phenomenon at the set of QI nodes
{ti,i =0,...,2n} in case of Galerkin, Kantorovich and Kulkarni

methods
p(ti) — pa(ti) = O(h*),
p(ti) — p2(t) = O(h?),
p(ti) — pRi(t) = O(h®),



Convergence orders of the solutions

Theorem —case k = 3

Assume that the solution p has a bounded fourth derivative,
then there holds

o= pa|l, = O(h%), o — pk?|| . = O(h%),
9= illoc = O(h*(h)), limp o2(h) = O

lo = Pi*[|. = O(h®).



Example

Integral equation p(x) — /1 K(x,y)p(y)dy = ¢(x), x € [0,1],
with °

@ exact solution p(x) = exp(—x) cos(x)

@ kernel K(x,y) = exp(xy)

@ function
1/}(X) — exp(_x) COS(X) + eXp(X—1)(COS(1)(1—X)—Sin(l))+X—1

X2—2X+2




Example

Integral equation p(x) — /1 K(x,y)p(y)dy = ¢(x), x € [0,1],
with °

@ exact solution p(x) = exp(—x) cos(x)

@ kernel K(x,y) = exp(xy)

@ function _

P(x) = exp(—x) cos(x) + eXp(X_1)(C°s§(12)£12;i)2_sm(1))+x_1

We compute the maximum absolute error for increasing values
of n

en = max|p(z) — pn(2)|,
zeG

where G is a set of 1500 equally spaced points in [0, 1].
We also compute the numerical convergence order (NCO).



Example

Methods based on P,
n el NCOq4 eka NCOya es NCOs eku NCOy,
4 2.7(-04) 2.4(-05) 1.3(-04) 2.1(-09)
8 3.1(-05) 3.1 2.8(-06) 3.1 5.7(-06) | 4.5 1.0(-11) 7.7
16 || 3.9(-06) 3.0 3.4(-07) 3.0 2.8(-07) | 4.3 | 5.4(-14) 7.6
32 || 4.9(-07) 3.0 | 4.2(-08) 3.0 1.5(-08) | 4.2 1.0(-15) -
64 || 6.1(-08) 3.0 5.3(-09) 3.0 8.8(-10) | 4.1 -
128 || 7.6(-09) 3.0 6.5(-10) 3.0 53(-11) | 4.0 -
256 || 1.1(-10) 3.0 8.1(-11) 3.0 3.2(-12) | 4.0 -
Methods based on P3
n el NCOq4 eka NCOya es NCOs efu NCOyy
4 3.1(-05) 3.3(-06) 2.3(-06) 1.2(-09)
8 2.1(-06) 3.9 2.5(-07) 3.7 7.3(-08) | 4.9 | 5.0(-12) 7.9
16 || 1.4(-07) 4.0 1.8(-08) 3.8 2.1(-09) 51 | 2.0(-14) 8.0
32 || 8.7(-09) 4.0 1.2(-09) 3.9 6.0(-11) 51 | 8.0(-16) -
64 || 5.5(-10) 4.0 8.1(-11) 3.9 1.8(-12) 5.1 -
128 || 3.4(-11) 4.0 5.1(-12) 4.0 5.5(-14) 5.0 -
256 || 2.1(-12) 4.0 3.2(-13) 4.0 2.4(-15) - -




Example

We compute the maximum absolute error at the QI nodes
{t,i = 0,...,2n} for the spline projector P,

es. —  max o
" zefyi=0.. ) [p(2) = pn(2)]
n i dss esq” NCOxa esKU NCOy,
4 || 1.3(:04) 2.8(-06) 1.3(-09)

8 |59¢-06)| 45 |23(-07)| 44 |49(-12)| 8.0
16 || 4.4(-07) | 3.7 |1.2(-08) | 43 |20(-14)| 7.9
32 || 3.0(-08) | 3.9 |83(-10)| 3.9 |4.4(-16)| -

64 | 1.9-09) | 3.9 |5.6(11)| 3.9 -
128 || 1.2(-10) | 4.0 |3.6(-12) | 4.0 -
256 | 7.8(-12) | 4.0 |2.3(-13)| 4.0 -

Superconvergence



Work in progress

Spline quasi-interpolation for the solution of:
@ integral equations with Green'’s function kernels
@ weakly singular integral equations
@ line integral equations



2D SPLINE SPACES



Bivariate quadratic spline spaces on criss-cross

triangulations Amn: S2(Q, Amn)

Let:
@ O = [a,b] x [c,d] be a rectangular domain

@ m, n be positive integers

@ X =(x)"2, wherex ;=X 1 =Xp=a<X <...<

Xm-1 < b =Xm = Xm41 = Xm42
v n+2
Oy =(y)%, wherey , =y ;1 =yp=C<y1 <...<
Yn-1 <d =Yn =Yni1 = Yni2
@ A be the corresponding criss-cross triangulation
d =Yn=Yni1 = Ynt

Yn—1

a X1 Xm—1b
X

X_1 Xm-+1
X_3 Xm+2



Bivariate quadratic spline spaces on criss-cross

triangulations Amn: S2(Q, Amn)

Let:
@ O = [a,b] x [c,d] be a rectangular domain

@ m, n be positive integers

@ X =(x)"2, wherex ;=X 1 =Xp=a<X <...<

Xm-1 < b =Xm = Xm41 = Xm42
v n+2
Oy =(y)%, wherey , =y ;1 =yp=C<y1 <...<
Yn-1 <d =Yn =Yni1 = Yni2
@ A be the corresponding criss-cross triangulation
d =Yn=Yni1 = Ynt

Yn-1 S%(Q, Amn)

a X1 Xm—1b
X

X_1 Xm-+1
X_3 Xm+2



-l
Exam ple . SZ (Q, Amn) [BOX SPLINES: de Boor, Chui, Dagnino, Dahmen, Héllig, Lyche, Micchelli,

Sablonniére, Schumaker, Wang, ...]

@ classical spanning functions
@ data points also outside the domain



FI rSt meth Od [Sablonniére, Dagnino, Demichelis, Lamberti, Remogna, ...]

@ spanning functions with support completely in the domain
@ data points inside or on the boundary of the domain



Second methOd [Remogna, 2010]

@ classical spanning functions
@ data points inside or on the boundary of the domain



Spannlng Set B [Sablonniére, 2003]

B = {B; }:1;11_:61 collection of (m + 2)(n + 2) quadratic

B-splines, with support Zjj, spanning S3(2, Amn)

Y00 Xj Zm2

Boo Blj Bm2



Dimension and basis

dim S3(Q, Amn) = (M +2)(n+2) -1
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Dimension and basis

dim S3(Q, Amn) = (M +2)(n+2) -1

4

The B-splines in the spanning set B are linearly dependent

In order to obtain a basis, we have to remove one B-spline from
3, with C! smoothness everywhere or with C° smoothness on
the boundary of its support



O ptl m al S pl I n e q U aS I = I nte r pO I antS [Sablonniére, 2003; Dagnino-Lamberti, 2008]

@ Optimal spline quasi-interpolants exact on P,(R?)
Q . .F — S%(Q, Amn)
f(x,y) =~ Qf(x,y)



O ptl m al S pl I n e q U aS I = I nte r pO I antS [Sablonniére, 2003; Dagnino-Lamberti, 2008]

@ Optimal spline quasi-interpolants exact on P,(R?)
Q: F— S%(Q, Amn)
f(x,y) = Qf(x,y)
@ Quasi-interpolation nodes:
{Mj = (si,4)}, s = 55 f = U=3P
{Aj = (xi, )}

[ ] [ ] [ ) q




Appr0X|mat|0n Of partlal derlvatlves [Dagnino-Remogna-Sablonniére, 2013]

Df(X,y) ~ D*Qf(X,Y)
with:
0 a=(a1,a2) o] =a1+a,0<[af <2

olal

® D" = Gaxaezy

@ (X,y) €T triangle in Amp, for [a| = 0,1

@ (X,y) €int(T), T triangle in Amp, for |a| =2



Error H D(l‘ (f - Qf ) H% [Dagnino-Remogna-Sablonniere, 2013]

Letf € C¥(Q), with 0 < |a| < v < 2, |a| = 0,1, 2, then

_ he\le h
HWW—QmuTscmVQ})rwWwGwan)
: v\ hs 2

If, in addition, f € C3(Q), then

a ~ h o —|a
I0°( - @l < Cioia (7)1 o]
T

with hi = Xj — Xj_1, kj =Y —Yi-1, hT = max{hi,kj},
h-T— = min {hi,kj}.

Global results only for |a| = 0, 1.



ErrOr H DQ‘ (f - Qf ) H’)O [Dagnino-Remogna-Sablonniere, 2013]

@ For |a| = 0, the error bounds are independent of the mesh

ratios (E—I) = Qf »finT ashy — 0.



Error H DQ (f - Qf ) H [Dagnino-Remogna-Sablonniere, 2013]

@ For |a| = 0, the error bounds are independent of the mesh
ratlos( ):>Qf —finT ashy — 0.

@ For |a| =1, 2, the error bounds depend on the mesh ratios
(h*) When such ratios are bounded = D*Qf — D*f in T
as ht — 0.



Error H D(l (f - Qf ) H [Dagnino-Remogna-Sablonniere, 2013]

@ For |a| = 0, the error bounds are independent of the mesh
ratlos( ):>Qf —finT ashy — 0.

@ For |a| =1, 2, the error bounds depend on the mesh ratios
(h*) When such ratios are bounded = D*Qf — D*f in T
as ht — 0.

Such ratios are bounded for example in case of uniform
triangulation or ~-quasi uniform partitions (0 < h/h* <+,
~ > 1 constant).



Example

@ Test function on Q = [—4, 4]?

f(x,y) = 3(1—x)2e*=0+D%) _10 (X —x3 — y5) e(=x*=¥?)
—%e(*(x+1)2*y2)

@ G is a 300 x 300 uniform rectangular grid of evaluation
points in

@ f_error = max v)ec |(f — Qf)(u, V)|

@ D(2)f_error = maxy yyeg |D+2)(f — Qf)(u, V)], || = 1



Example

The graphs of f, Qf and |f — Qf| computed on the grid G,
considering a uniform triangulation withm = n = 128

- -
0 0
- -
A d -
122 4-122 4
° . s O 2 0 2 0 2
4 4 4 -4




Example

The graphs of D&9f, DEOQf and |DO)(f — Qf)| computed
on the grid G, considering a uniform triangulation with

m=n =128
10 10
0 L ’ 0
-
19 A 4 19 5
2 0 2 4 0
44 2




Example

The graphs of DOYf, DODQf and |[DOV(f — Qf)| computed
on the grid G, considering a uniform triangulation with

m=n =128
20 20 0.03
10 10 0.02 A
ar AN A
0 < 0 < i
- - - - 0
-10 < -10 < 9
4 4 2 4
2 4 2 4 0 2
0 2 0 2 0
2 2 0 2 2 0 2 44 2
4 4 4 4



(:l_l‘x nn’y )

Quad ratIC Spllne Space 82 (Q7 Amn) [Dagnino-Lamberti-Remogna, 2012]

Let Sg‘_‘x”_‘y)(Q, Amn) be the space of bivariate quadratic
piecewise polynomials on Amn, where
o ¥ = ()", and ¥ = (u))[_;" are vectors whose
elements can be 1,0,-1 and denote the smoothness C*,
CO, C1, respectively, across the inner grid lines
X=X =0,i=1,....m-landy -y;=0,j=1,...,n—1,
@ while the smoothness across all oblique mesh segments?
isC?t

1We call mesh segments the line segments that form the boundary of each
triangular cell of Amn.



Dimension

Given s € S{"7)(Q, Amn), we denote by

@ L9 (L, ") the number of vertical grid lines x — x; = 0,

i =1,...,m— 1 across which s has C° (C ') smoothness
<) L? (L;l) the number of horizontal grid linesy —y; = 0,
j=1,...,n—1across which s has C° (C ') smoothness
4

dim Séﬁx’ﬁy)(ﬂ, Amn) =dp +d; +dg,

di= (m+2)(n+2)—
d = (n +1)L°—|—(m—|—1)L
d3= (2n+3+L0 + L)Lt +(@m+ 3+ L2 + Lyt + L Lyt



Spanning set B

B = {Bj }IMZBlJEgl collection of M - N quadratic B-splines with

multiple knots, spanning Séﬁx’ﬁy)(ﬂ, Amn), where

m-—1 n—-1
oM:2+me‘,N:2+ijy

i—1 =1
o m* = (M), mx =2 —px, mY = (m))=h, mY =2 — )

vectors of knot multiplicity

Bjj smoothness and support, containing multiple knots, change
as the number of triangular cells on which the function is
nonzero is reduced



a thick line corresponds to a double knot
a dotted line corresponds to a triple knot
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a thick line corresponds to a double knot

a dotted line corresponds to a triple knot




a thick line corresponds to a double knot
a dotted line corresponds to a triple knot




B-spline basis

4B =M -N > dim S5 (Trn)

i.e. the elements of B are linearly dependent.



B-spline basis

4B =M N > dim S (Trn)

i.e. the elements of B are linearly dependent.
In order to obtain a basis, we have to remove one B-spline for
each subdomain, with C! smoothness everywhere or with C°
smoothness only on the boundary of its support

@ athick line corresponds to a double knot
@ adotted line corresponds to a triple knot



Applications to NURBS surfaces

We provide:

@ bidirectional net of control points (Pj), Pj € R3
@ real positive weights (w;;)
@ suitable knot vectors X and y in the parametric domain 2



Applications to NURBS surfaces

We provide:
@ bidirectional net of control points (Pj), Pj € R3
@ real positive weights (w;;)
@ suitable knot vectors X and y in the parametric domain 2

and we define the NURBS surface

20 Wi Py Bi(x,y)

S(X,
by > Wij Bij(x,y)
:Z” PIJ Rij(xay)v (X7y) €Q
with b B
Ri(X,y) = wj Pjj Bjj(X,y)

er Wrs Brs(X,Y)



The B-splines in B are non negative and satisfy the
property of unity partition = S(x,y) has convex hull and
affine transformation invariance properties.

X and ¥ have simple knots = S(x,y) is C1.

B-spline locality property = S(x,y) interpolates the control
points P;; whose pre-images are the corner points of each
subdomain.

In case w;; = w, V(i,j), then S(x,y) is a B-spline surface.
If, in addition, we consider a functional parametrization,
S(x,y) is the spline function defined by the well known
bivariate “variation diminishing” operator, reproducing
bilinear functions.



Example

We want to reconstruct a bar bell by a suitable quadratic
NURBS surface

i\




12
=0,j=0"

8
i

We consider the bidirectional net of control points (P; );




0

NI ([ p— H..v Il
ol guo0Togl
= 2 o = S
£ - ©
—
~ =M 1 I 2
2 £5 I g
mu R Wo _ R
T = )
= g ISk s
g T8 Fu g
° . = £y
o m — : & W &
ol =g = Is
2< gl &% gy
g =0y
T
g
s

We consider the bidirectional net of control points (P; );




Example

If we assume:
- Q=10,1] x [0,1]

. 1111
X=(0,0,0,%,%,%:3%>



Example

If we assume:
- Q=10,1] x [0,1]

then we can model the object
by the C® NURBS surface

2o X120 Wi Py Bj(x,Y)
2o X120 Wi Bj(x,y)

S(X7y) =

. . . - . - . . .
617 re
) = = ¢+
517 . . . . . . . .
. - . = . - . = ]
a7
37
. - . = . - . .
1
. - . - . - . - .
0 14 172 34 1

Parametric domain




Applications to elliptic diffusion-type problems with

mlxed boundary Condltlons [Cravero-Dagnino-Remogna, 2012]

Let:
- Q c R? be an open, bounded and Lipschitz domain
- Q)QFD,FN g@Q,@Q:I:DUI:N andI’DﬂFN =0

—V-(KVu)=f, inQ

;nu =0ON on Ty, (Neumann conditions)
K
u=g, onlp (Dirichlet conditions)

where
- K € R?*2 js a symmetric positive definite matrix
- Nk = Kn is the outward conormal vector on Iy
fcL?(Q)
gn € L3(T)
g € HY2(I'p) (g is the trace on 'y of function in
HY(Q) = {v € L?(Q) : D € L?(Q), || <1})



Reconstruction of the domain

Q domain in R?, exactly described through the parametrization
_ X
G: QO — Qa G(Ean) = <y>

expressed as quadratic NURBS surface
G(faﬂ) = Zu PIJ RIJ (5777)1

with {P;}, Pj € RR?, bidirectional net of control points

G(En)

0




Numerical solution

Weak formulation

4

Galerkin method
(discretized problem depending on the parameter h > 0)



Numerical solution

Weak formulation

4

Galerkin method
(discretized problem depending on the parameter h > 0)

un, approximation of the solution u: up = Z q;(Rjj o G™1)
j

g;j to be determined by solving a linear system



Example

—Au=f, inQ
u=0, onlp =09,

exact solution
u(x,y) = sin(wx) sin(wy) 08

@ Reproduce the domain — introduce a discontinuity in the
first derivative and create the corners — two approaches:
© place two control points at the same location in physical
space;
@ use suitable double knots in the knot vectors.



Example

—Au=f, inQ
u=0, onlp =09,

exact solution
u(x,y) = sin(wx) sin(wy) 08

@ Reproduce the domain — introduce a discontinuity in the
first derivative and create the corners — two approaches:
© place two control points at the same location in physical
space;
@ use suitable double knots in the knot vectors.

4

In the first case, we ensure that the basis has C* continuity
throughout the interior of the domain



Example — Approach 1: Double control point

Reproduce the domain:

£=(0,0,0,0.5,1,1,1), 7= (0,0,0,1,1,1)

3 2
G(§777) = Z Z I:>Ij BIJ (5777) (577]) € QO

i=0 j=0

o9 ] i Pio Pi1 Piz
1](-1,-1) (-0.7,0) (0,0)
= 3| (1,-1) (1,-0.65) (1,0)




Example — Approach 1: Double control point

@ Perform h-refinement, considering m = 2, 4, 8, 16, 32,
n=1,2, 4,8, 16, and smoothness vectors i, ;"7 with
elements equal to one

@ To obtain a basis, we have to neglect one B-spline either
with C! smoothness everywhere or with C° smoothness
on the boundary of its support

The graphs of
(a) the exact solution
(b) the approximation computed withm =8,n =4
(c) the discrete L>-norm of the error computed on a 35 x 35 grid of evaluation
points in Qg



Example — Approach 2: Double knot

Reproduce the domain:

£=(0,0,0,05,0.5,1,1,1), 7 = (0,0,0,1,1,1)

4 2
G(§7 77) = Z Z I:’I] BI] (57 77) (57 77) € QO

i=0 j=0

n,=n,=n =1

Pio Piy Pi2

(-1,0)  (-0.55,0) (0,0.5)
(-1,-1) (-0.5,-05) (0,0)
(0,-1)  (0,-0.55) (0.5,0)

LE
o >
05 ;

A WNPRFEO|I—

n_,=n_,=n,=0
TR 0 55,705 £ =1




Example — Approach 2: Double knot

@ Perform h-refinement, considering m = 2, 4, 8, 16,32, n = 1, 2, 4, 8, 16, and "
with elements equal to one, while z¢ with all elements equal to one except the
element corresponding to £ = % that is equal to zero

@ To obtain a basis, we have to neglect two B-splines either with C1 smoothness
everywhere or with C® smoothness only on the boundary of its support, because
in this case g is subdivided into two subdomains

The graphs of
(a) the exact solution
(b) the approximation computed withm =8,n =4
(c) the discrete L>-norm of the error computed on a 35 x 35 grid of evaluation
points in Qg



Example

Discrete L2-norm of the error versus interval number per side

(m,n)

2.1

4,2) (8,4) (16,8)

(32,16)

L2-error, Approach 1

7.1(-1)

45(-1) 5.3(2) 6.4(-3)

6.2(-4)

L2-error, Approach 2

8.3(-1)

22(-1) 1.7(-2) 1.6(-3)

1.8(-4)




Powell-Sabin triangulation generated by a uniform

6'd | reCtlon meSh [Goodman, 1997-2007; Chui-Jiang, 2003; Bettayeb, 2008; Davydov-Sablonniére, 2010]

Q = [0, m1h] x [0, m2h]
ARS 1, uniform 6-direction mesh
SAANAN AT
B
vadrdrndra
SN

A

e = (1,2)

m?z’(%?z

es =(—1,1) e, =(0,1Ye3 =(1,1) w’ /

/

7 A

o w7 b‘"%b"/
~ BR W

P
A
S2(Q,AFS ) = {s € C2(Q) | s |re P3(R?), T triangle € ARS }

mg,mp

space generated by dilation/translation of the multi-box spline
¢ = (1, ¥2)



Multi-box spline ¢,

@ (my + 1)(m;, + 1) shifts of 4, denoted by

X . .
P1a(X,Y) = @16 (X Y) = ¢1 (H —h % _J) ’

with supports centered at the points ¢, = ¢;; = (ih,jh) and
ac Ay ={(i,j), 0 <i<my, 0 <j < my},
@ normalized multi-box spline ¢; = Z¢;.

Support and graph of ¢



Multi-box spline ¢,

@ (my + 3)(my + 3) — 2 shifts of y,, denoted by

X . .
©2,a(X,Y) = 02, (X,¥) = ¥2 <H —-h % _J> ’

with supports centered at the points ¢, = ¢;; = (ih, jh) and
ac A ={(i,]), -1<i<mp+1 -1<j<
my + 1; (Ivj) 7£ (ml +1, *1)7 (71, my + 1)}1

@ normalized multi-box spline g, = %@2.

Support and graph of ¢,



S% (Q, APS ) [Remogna, 2012]

mg,mp

@ spanning functions with supports also outside Q
@ data points inside or on the boundary of the domain



Quasi-interpolants using data points inside or on the

boundary Of the domaln [Remogna, 2012]

Qf = Z [Al,a(f)a )‘Z,Q(f)]‘ﬁcw

acA;

where
@ ¢ =[p1,5]" and 31, =0 fora € A\ Ay
o\ o(f) = ZBeFv,a ov.a(B)(Ag), v=1,2
@ The finite set of points {Ag, € Fy o},
Fva CA={(k,),k=0,....mg,1 =0,...,my} liesin
some neighbourhood of supp ¢y . N

S

\V/
LSS,

S
'/i{"/ﬁﬂ ZaNZi

D

\V/ N7/
LD
k

@ Q exact on the space of polynomials P3(IR?)



Operator Q1: near-best quasi-interpolant

We obtain the coefficient functionals || Ay o[, vV = 1,2, by
minimizing an upper bound for the QI infinity norm



Operator Qq: near-best quasi-interpolant

We obtain the coefficient functionals || Ay o[, vV = 1,2, by
minimizing an upper bound for the QI infinity norm

Operator Q,: quasi-interpolant with superconvergence

properties

We impose the superconvergence of the gradient at some
specific points of the domain

- the vertices of squares A | = (kh, Ih),

1 A1 Cei Axl

- the centers of squares My | = ((k — %)h, (- 3)h),
- the midpoints Cy | = ((k — 3)h, h)
of horizontal edges Ay _1 1Ay,

the midpoints Dy | = (kh, (I — $)h)
of vertical edges Ay |_1Ax,,

Dk—l Dk,l

B

Ax—11-1Ck -1 Ax-1



Norm and error estimates

For the operators Qy, v = 1, 2 the following bounds are valid

53 185
|Q1lloo £ = ~8.83, ||Q2]lco < —— ~ 20.56.
6 9



Norm and error estimates

For the operators Qy, v = 1, 2 the following bounds are valid

53 185
“QlHoo < F ~ 8.83, HQZHoo < ? ~ 20.56.

Theorem 2

Letf € C4(Q) and |y| = 0,1,2, 3. Then there exist constants
Kv,, > 0,Vv = 1,2, such that

IDY(f — Quf)|l,, < Kyh* 1 ma)iHDﬁfH

where D? = DA% = ﬁ, with 81 + B2 = |B.



Example

f(x,y) = Franke’s function on [0, 1]?

1.4
12

1
0.8
06
0.4
0.2

0




Example — Approximation of the function

G: uniform rectangular grid of 300 x 300 points in the domain

Ef = max [f(u,v) — Qf(u,v)|, for Q = Q1,Q>

(u,v)eG

rf: numerical convergence order

Q1 Q2
m; = mo Ef rf Ef rf

32 8.8(-4) 8.8(-4)

64 6.0(-5) 3.9 |6.0(-5) 3.9
128 | 3.9(-6) 4.0 | 3.9(-6) 4.0
256 | 2.4(-7) 4.0 | 2.4(-7) 4.0




Example — Approximation of the gradient

_ 0 _ 90 0 _ 0
VEf_(ur?/z);\é(G (]axf(u,v) 8XQf(u,v)|+‘Byf(u,v) 8ny(u,v)D,

forQ = Q1,Q:

Vrf: numerical convergence order

Q1 Q2
m; = m; VEf Vrf VEf vrf
32 8.9(-2) 4.5(-2)
64 8.9(-3) 3.3 |54(-3) 3.0
128 9.0(-4) 3.3 | 6.8(-4) 3.0
256 9.8(-5) 3.2 | 8.6(-5) 3.0




Example — Approximation of the gradient

G’: grid of points of superconvergence

_ 9 _ 0 9 _ 9
VEf = max (I&fwv) 8XQf(u,v)|+]ayf(u,v) 8ny(u,v)D,

forQ =Q1,Q2

Vrf: numerical convergence order

Q1 Q2
m; = ms VEf Vrf VEf vrf
32 8.9(-2) 3.4(-2)
64 8.9(-3) 3.3 | 24(-3) 38
128 9.0(-4) 3.3 | 1.6(-4) 3.9
256 9.8(-5) 3.2 | 9.8(-6) 4.0




Comparison of the two methods

Near-best QI

@ we impose the exactness on P3(R?) and we minimize an
upper bound for the QI infinity norm

@ the construction of each functional is independent of the
others



Comparison of the two methods

Near-best QI

@ we impose the exactness on P3(R?) and we minimize an
upper bound for the QI infinity norm

@ the construction of each functional is independent of the
others

Superconvergent QI

@ we impose the exactness on P3(R?) and the interpolation
condition for the gradient at the specific points for the
monomials of P4(R?)\PP3(R?) and, in case of free

parameters, we minimize an upper bound for the QI infinity
norm U

@ more conditions and functionals involving more data points
@ loss of independence in the functional construction

@ best performances in the numerical tests



Work in progress

@ Solution of integral equations on surfaces in R3 by spline
guasi-interpolation



3D SPLINE SPACES



Partition of the domain Q c R3

Q= [O,mlh] X [0, mzh] X [O, m3h] C R3
divided into equal cubes




Trivariate spline space S3(Q2, Tm)

Partition 7m, m = (M1, M5, m3)

puy subdivision of a cube
j’\ into 24 tetrahedra
(type-6 tetrahedral partition)




Trivariate spline space S3(Q2, Tm)

Partition 7m, m = (M1, M5, m3)

puy subdivision of a cube
j’\ into 24 tetrahedra
(type-6 tetrahedral partition)

)
Spline space S7(£, Tm)



Trivariate spline space S3(2, Tm) wees 0

Spline space generated by the scaled translates of the
7-direction box spline B(x,y, z), whose supports overlap with

Support of the 7-direction
box spline B(x,y, z):

Truncated rhombic dodeca-
hedron contained in the cube
[_273] X [_273] X [075]

e ey 5

U 115
T and centered at (2, > 2)




O ptl m al S pl I n e q U aS I = I nte r pO I antS [Dagnino-Lamberti-Remogna, 2012-2014]

@ Optimal spline quasi-interpolants exact on P3(R?)

Q:F — SZ(Q,Tm)
f(x,y,z) =~ Qf(x,y,z)

of near-best type, i.e. with coefficient functionals obtained
by minimizing an upper bound for the QI infinity norm.



Quasi-interpolation nodes

{Mijic = (si, tj, ux)}, with

So=0, si=(—2)h, 1<i<mg, Sp41=mih

to=0, t=({-3h 1<j<mp,  tm,11=mh

Up=0, ug=(k—3)h, 1<k <ms, Up,i1=mzh.
inside or on the boundary of

e

S 7 ——




Quasi-interpolation nodes

{Mijic = (si, tj, ux)}, with

So=0, si=(—3)h, 1<i<mg, Sp1=myh
to=0, t=(—%h 1<j<my  ty,1=mgh
Up=0, ug=(k—3)h, 1<k <ms, Up,i1=mzh.

inside or on the boundary of

Pl T
L /7 ——
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AL ]
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Quasi-interpolation nodes

{Mijic = (si, tj, ux)}, with

So=0, si=(—3)h, 1<i<mg, Sp1=myh
to=0, t=(—%h 1<j<my  ty,1=mgh
Up=0, ug=(k—3)h, 1<k <ms, Up,i1=mzh.

inside or on the boundary of

ST
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Quasi-interpolation nodes

{Mijic = (si, tj, ux)}, with

So=0, si=(—3)h, 1<i<mg, Sp1=myh
to=0, t=(—%h 1<j<my  ty,1=mgh
Up=0, ug=(k—3)h, 1<k <ms, Up,i1=mzh.

inside or on the boundary of

rd e —
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O ptl m al S pl I n e q U aS I = I nte r pO I antS [Dagnino-Lamberti-Remogna, 2012-2014]

@ Optimal spline quasi-interpolants exact on P3(R3)

Q: F — S2(Q,Tm)
f(x,y,z) = Qf(x,y,z)

of near-best type, i.e. with coefficient functionals obtained
by minimizing an upper bound for the QI infinity norm.

@ Quasi-interpolation nodes inside or on the boundary of Q
{Mijk = (Si,tj, Uk)}, with

So=0, si=(i—3)h, 1<i<mg, Sm41=msh
tb=0, t=({—5h 1<j<mp,  tm,11=mph
Up=0, ug=(k—3)h, 1<k <ms, Up,1=mzh.

@ Quasi-interpolation nodes also outside Q2 [Remogna, 2011;
Dagnino-Lamberti-Remogna, 2013]



Error estimates

Letf € C'(Q), r = 0,1,2,3. Then there exist constants K, > 0,
such that B

If —Qf|l, < Kh'w(D'f,h).
If in addition f € C#(Q) then there exists constant K4 > 0, such

that
If — Qf||. < Ksh? max HDﬁfH



Numerical tests

Domain = [a, b]
h=22 m=m; =m;=mz m=16,32,64,128
G = 139 x 139 x 139 uniform grid of evaluation points in Q

Eqf = maxycq [f(u) — Qf(u)], Qf € SZ(R, Tm)
Erf = maxycc [f(u) — Rf(u)|, Rf € S7,(Q, Pm)

R is a spline QI in the space S3 ,(Q, Pm) of trivariate
splines on prismatic partitions defined as tensor product of
univariate and bivariate C! quadratic B-splines.

R is obtained as blending sum of uni and bivariate C*
guadratic spline QIs [Remogna-Sablonniére, 2011]

rrf, rof numerical convergence orders



The Marschner-Lobb function f;

fl(X,Y»Z) = \
1 . 7z T/ X2 +y2
——[1—-sin—+ l1+4+cos|2 cos | ———
s (190 o (o (e () )
with 8, = % and 5, =6 10° e
on the cube [-1,1]3 M

m EQf]_ erl ERf]_ erl
16 | 2.0(1) 1.9¢1)

32 | 1.3(-1) 0.6 | 15(-1) 04 05 32 64 128
64 | 65(-2) 1.0 |32(2) 2.2
128 | 2.1(-2) 1.7 | 4.6(-3) 2.8




The Marschner-Lobb function f;

fl(X,Y»Z) = \
1 v T/ X2 +y?

with 8; = % and j3, = 6 on the cube [-1,1]3

The isosurface obtained from (a) f; and (b) Qf;, with m = 64,
for the isovalue p = 1/2



The smooth trivariate test function of Franke type f,

fZ(X7y7 Z) =
L1002+ -3)7) . 3g-16(0x- 3Py~ 2423
Lo 100 3PP+ B) _ 120003+ )2)

on the cube [0, 1]°

m EQ fz o) f7_ ERf2 I’sz
16 | 1.7(2) 6.6(:3) |
32 | 8.0(-4) 4.4 |82(-4) 3.0 10° 16 32 64 128
64 | 5.2(-5) 3.9 | 9.8(5) 3.1
128 | 3.3(-6) 4.0 | 85(-6) 3.5




p=0.2

p=05

The smooth trivariate test function of Franke type f,

‘ '

11

p=0.28

Isosurfaces of Qf, for m = 32, with different isovalues



Reconstruction of real world data — CT Head data set

Gridded volume data set consisting of 256 x 256 x 99 data
samples obtained from a CT scan of a cadaver head (courtesy
of University of North Carolina)




Reconstruction of real world data — CT Head data set

Isosurfaces of the C? trivariate quartic spline approximating the
CT Head data set with isovalues: (a) p = 60, (b) p = 90, with
#G ~ 8.6 - 10° evaluation points



Reconstruction of real world data — MR brain data set

Gridded volume data set of 256 x 256 x 99 data samples
obtained from a MR study of head with skull partially removed
to reveal brain (courtesy of University of North Carolina)




Reconstruction of real world data — MR brain data set

Isosurface of the C? trivariate quartic spline approximating the
MR brain data set with isovalue p = 40, with 4G ~ 8.6 - 108
evaluation points



Ap p I I Catl O n S tO n U m e r I Cal I nteg ratl O n [Dagnino-Lamberti-Remogna, 2012-2013]

For any function f € C(2), we consider the evaluation of the
integral

I(f) =I(f; Q) ::/Qf(x,y,z) dx dy dz,



Ap p I I Ca.tl 0 n S tO n U m e r I Cal I nteg ra.tl O n [Dagnino-Lamberti-Remogna, 2012-2013]

For any function f € C(2), we consider the evaluation of the
integral

I(f) =I(f; Q) ::/Qf(x,y,z) dx dy dz,

by cubature rules defined by

lo(f) = 1(QF; Q) =) widf(Myy),
ijk
with
- Mijjk: cubature nodes in 2. They coincide with the
guasi-interpolation nodes
- wijﬁ?(: cubature weights, linear combinations of fQﬂsuppBijk Biik

- the precision degree is 3, because Q is exact on P3(R3)
- if f € C*(Q), then | I(f) — Io(f) |= O(h*)



Example

@ integration domain: Q = [0, 1]®
@ m=my=mzg=m,h=1/mandm =16, 32, 64, 128
@ integrand functions
o fi(x,y,z) = e((-05+(y~05+z-057) (smooth test
function), I(f;) = 0.7852115962

o f,=2/1—2x —1[\/1—]2y —1]\/1—[2z — 1]
(continuous test function), I(f,) = 1

m | [I(f) —lo(f)l  rfa | [I(f2) —lg(f2)| rf

16 2.9(-5) 4.9(-3)
32 1.9(-6) 3.9 2.4(-3) 1.1
64 1.3(-7) 3.9 9.3(-4) 1.3

128 8.1(-9) 4.0 3.5(-4) 1.4




Work in progress

@ Systematic method for the construction of families of
near-best C? quartic spline QlIs on type-6 tetrahedral
partitions of the space
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