On 1D, 2D and 3D spline quasi-interpolation

S. Remogna*

Department of Mathematics, University of Torino - ITALY

Miniworkshop
Advances in Numerical Analysis and Applications
Torino, March 30–31, 2015

*Joint work with C. Dagnino and P. Lamberti, Department of Mathematics, University of Torino

Spline spaces

- $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3
- Δ partition of Ω
- the domain Ω is divided into a finite number of sub-domains D_i , i = 1, ..., N by the partition Δ

Spline spaces

- $\Omega \subset \mathbb{R}^d$, d = 1, 2, 3
- Δ partition of Ω
- the domain Ω is divided into a finite number of sub-domains D_i , i = 1, ..., N by the partition Δ

Spline space

$$S_k^{\mu}(\Omega, \Delta) = \left\{ s \in C^{\mu}(\Omega) \mid s \mid_{D_i} \in \mathbb{P}_k(\mathbb{R}^d), \ i = 1, \dots, N \right\}$$

 $s \in S_k^{\mu}(\Omega, \Delta)$ is a piecewise polynomial of degree k with μ order continuous (partial) derivatives in Ω

A local spline quasi-interpolant (abbr. QI) of a function *f* has the general form

$$Q: \mathcal{F} o S_k^{\mu}(\Omega, \Delta)$$

$$\mathsf{Q} f = \sum_{\alpha \in \mathcal{A}} \lambda_{\alpha}(f) \phi_{\alpha},$$

A local spline quasi-interpolant (abbr. QI) of a function f has the general form

$$Q: \mathcal{F} \to \mathcal{S}^{\mu}_{k}(\Omega, \Delta)$$
 $Qf = \sum_{\alpha \in A} \lambda_{\alpha}(f)\phi_{\alpha},$

where

• $\{\phi_{\alpha}, \ \alpha \in \mathcal{A}\}$ family of blending functions with compact support forming a partition of unity

A local spline quasi-interpolant (abbr. QI) of a function f has the general form

$$\mathsf{Q}:\mathcal{F} o \mathcal{S}^{\mu}_{k}(\Omega,\Delta)$$
 $\mathsf{Q}f=\sum_{lpha\in A}\lambda_{lpha}(f)\phi_{lpha},$

where

- $\{\phi_{\alpha}, \ \alpha \in \mathcal{A}\}$ family of blending functions with compact support forming a partition of unity
- $\{\lambda_{\alpha}, \ \alpha \in \mathcal{A}\}$ family of local linear functionals defined on \mathcal{F} , expressed as linear combinations of values of f at some points in a neighbourhood of $supp \ \phi_{\alpha} \cap \Omega$

A local spline quasi-interpolant (abbr. QI) of a function f has the general form

$$\mathsf{Q}: \mathcal{F}
ightarrow \mathcal{S}^{\mu}_{\pmb{k}}(\Omega, \Delta) \ \mathsf{Q} f = \sum_{lpha \in A} \lambda_{lpha}(f) \phi_{lpha},$$

where

- $\{\phi_{\alpha}, \ \alpha \in \mathcal{A}\}$ family of blending functions with compact support forming a partition of unity
- $\{\lambda_{\alpha}, \ \alpha \in \mathcal{A}\}$ family of local linear functionals defined on \mathcal{F} , expressed as linear combinations of values of f at some points in a neighbourhood of $supp \ \phi_{\alpha} \cap \Omega$
- Q exact on the space of polynomials of degree at most r $\mathbb{P}_r(\mathbb{R}^d)$, i.e. Qp = p, $\forall p \in \mathbb{P}_r(\mathbb{R}^d)$, r < k

A local spline quasi-interpolant (abbr. QI) of a function f has the general form

$$egin{aligned} \mathsf{Q} : \mathcal{F} &
ightarrow \mathcal{S}^{\mu}_{\pmb{k}}(\Omega, \Delta) \ \mathsf{Q} f &= \sum_{lpha \in \mathcal{A}} \lambda_{lpha}(f) \phi_{lpha}, \end{aligned}$$

where

- $\{\phi_{\alpha}, \ \alpha \in \mathcal{A}\}$ family of blending functions with compact support forming a partition of unity
- $\{\lambda_{\alpha}, \ \alpha \in \mathcal{A}\}$ family of local linear functionals defined on \mathcal{F} , expressed as linear combinations of values of f at some points in a neighbourhood of $supp \ \phi_{\alpha} \cap \Omega$
- Q exact on the space of polynomials of degree at most r $\mathbb{P}_r(\mathbb{R}^d)$, i.e. Qp = p, $\forall p \in \mathbb{P}_r(\mathbb{R}^d)$, $r \leq k$
- $||f Qf||_{L^p(\Omega)} = O(h^{r+1})$, $1 \le p \le \infty$, f sufficiently smooth function, h maximum of the diameters of elements of Δ

Outline

- 1D QIs in spline spaces of degree k = 2, 3 and smoothness k 1
 - Integral equations

Outline

- 1D QIs in spline spaces of degree k = 2, 3 and smoothness k 1
 - Integral equations
- 2D QIs in spaces of quadratic splines on criss-cross triangulations
 - Approximation of derivatives
 - Error bounds for functions and derivatives
 - Construction of NURBS surfaces
 - Problems governed by PDEs
 - QIs in spaces of C^2 cubic splines on uniform Powell-Sabin triangulations

Outline

- 1D QIs in spline spaces of degree k = 2, 3 and smoothness k 1
 - Integral equations
- 2D QIs in spaces of quadratic splines on criss-cross triangulations
 - Approximation of derivatives
 - Error bounds for functions and derivatives
 - Construction of NURBS surfaces
 - Problems governed by PDEs
 - QIs in spaces of C^2 cubic splines on uniform Powell-Sabin triangulations
- 3D QIs in spaces of C^2 quartic splines on uniform type-6 tetrahedral partitions
 - Reconstruction of volumetric data
 - Numerical integration

1D SPLINE SPACES

Univariate spline spaces of degree k = 2, 3 and smoothness k - 1, $S_k^{k-1}(\Omega, \Delta_n)$

• bounded interval $\Omega = [a, b]$

Univariate spline spaces of degree k = 2, 3 and smoothness k - 1, $S_k^{k-1}(\Omega, \Delta_n)$

- bounded interval $\Omega = [a, b]$
- uniform knot partition

$$\Delta_n = \{x_{-k} = \ldots = x_{-1} = x_0 = a, x_i = a + ih, 1 \le i \le n - 1, b = x_n = x_{n+1} = \ldots = x_{n+k}\}.$$

Univariate spline spaces of degree k = 2, 3 and smoothness k - 1, $S_k^{k-1}(\Omega, \Delta_n)$

- bounded interval $\Omega = [a, b]$
- uniform knot partition

$$\Delta_n = \{x_{-k} = \ldots = x_{-1} = x_0 = a, x_i = a + ih, 1 \le i \le n - 1, b = x_n = x_{n+1} = \ldots = x_{n+k}\}.$$

• $\left\{B_{j}^{k}(x)\right\}_{j=0}^{n+k-1}$ basis of normalized B-splines defined on Δ_{n} , with $supp\ B_{j}^{k}=[x_{j-k},x_{j+1}]$, spanning the spline space $S_{k}^{k-1}(\Omega,\Delta_{n})$

Spline quasi-interpolating projectors [Dagnino-Remogna-Sablonnière, 2014]

Spline quasi-interpolating projectors P_k exact on P_k(R), k = 2, 3.
 They are projectors, i.e. P_ks = s, ∀s ∈ S_k^{k-1}(Ω, Δ_n)

Spline quasi-interpolating projectors [Dagnino-Remogna-Sablonnière, 2014]

 Spline quasi-interpolating projectors P_k exact on P_k(R), k = 2, 3.
 They are projectors, i.e. P_ks = s, ∀s ∈ S_k^{k-1}(Ω, Δ_n)

• Quasi-interpolation nodes $\{t_i, i = 0, \dots, 2n\}$, with

$$t_{2i} = x_i, \quad i = 0, \dots, n$$

 $t_{2i-1} = \frac{1}{2}(x_{i-1} + x_i), \quad i = 1, \dots, n$

Convergence properties

 P_k are uniformly bounded independently of the uniform partition

Theorem

For $f^{(k+1)}$ bounded, there holds

$$\|f - P_k f\|_{\infty} \le C_k h^{k+1} \|f^{(k+1)}\|_{\infty}, \quad \text{with} \quad C_k = \left\{ egin{array}{ll} rac{7}{24}, & k = 2 \\ rac{4}{9}, & k = 3 \end{array}
ight.$$

Convergence properties

 P_k are uniformly bounded independently of the uniform partition

Theorem

For $f^{(k+1)}$ bounded, there holds

$$||f - P_k f||_{\infty} \le C_k h^{k+1} ||f^{(k+1)}||_{\infty}, \text{ with } C_k = \begin{cases} \frac{7}{24}, & k = 2\\ \frac{4}{9}, & k = 3 \end{cases}$$

The operator P_2 is superconvergent at the quasi-interpolation nodes, i.e.

$$(f-P_2f)(t_i)=0$$
, for $f\in \mathbb{P}_3(\mathbb{R})$, $(f-P_2f)(t_i)=O(h^4)$, for f such that $\|f^{(4)}\|_{\infty}$ is bounded

Linear Fredholm integral equations of the second kind

$$\rho - T\rho = \psi,$$

with

-
$$T\rho(x) = \int_a^b K(x, y)\rho(y)dy$$
, $x \in \Omega$

- $\psi \in C(\Omega)$
- $K \in C(\Omega \times \Omega)$

The four projection methods

Galerkin method → approximate equation

$$\rho_n^g - P_k T P_k \rho_n^g = P_k \psi$$

$$\rho_{n}^{ka} - P_{k}T\rho_{n}^{ka} = \psi$$

Sloan's iterated version → approximate equation

$$\rho_n^s - TP_k \rho_n^s = \psi$$

$$\rho_n^{ku} - (P_kT + TP_k - P_kTP_k)\rho_n^{ku} = \psi$$

The approximate solutions

The approximate solution for each method is

- **1** Galerkin method $\rho_n^g = P_k \psi + \sum_{j=0}^{n+k-1} X_j B_j^k$
- 2 Kantorovich method $\rho_n^{ka} = \psi + \sum_{j=0}^{N+K} X_j B_j^k$

We have to solve a linear system and determine the unknowns $\{X_i, j = 0, ..., n + k - 1\}$.

Sloan's iterated version: it is obtained as an iterate of Galerkin's solution

$$\rho_n^s = \psi + T \rho_n^g \quad \Rightarrow \quad \rho_n^s = \psi + \sum_{j=0}^{n+\kappa-1} (\lambda_j(\psi) + X_j) T B_j^k,$$

 $\{X_j, j=0,\ldots,n+k-1\}$ determined by Galerkin method

The approximate solutions

$$\textbf{ Kulkarni's method } \rho_n^{ku} = \psi + \sum_{j=0}^{n+k-1} \mathbf{X}_j \mathbf{B}_j^k + \sum_{i=0}^{n+k-1} \mathbf{Y}_i T \mathbf{B}_i^k$$

The problem has 2(n+k) unknowns \rightarrow linear system of 2(n+k) equations

The system can be reduced to the solution of **one system** of n + k algebraic equations.

First we determine $\{Y_i, j = 0, \dots, n+k-1\}$ by solving the linear system, then we get $\{X_j, j = 0, \dots, n+k-1\}$

Computation of the solutions

In order to construct the linear systems we have to evaluate different kinds of integrals. For example

- $TB_j(x) = \int_a^b B_j(y)K(x,y)dy \rightarrow \text{suitable product}$ quadrature formulas (PQF) with B-spline weight functions
- $\int_a^b K(t_j,y)\psi(y)dy o ext{suitable Romberg's quadrature}$ formula
- $T\tilde{B}_i(t_j) = \int_a^b K(t_j, y) \tilde{B}_j(y) dy$, with $\tilde{B}_i(x) = TB_i(x) \rightarrow$ suitable Romberg's quadrature formula

$$\{t_i, j=0,\ldots,2n\}$$
 are the QI nodes.

Convergence orders of the solutions

Theorem – case k = 2

Assume that the solution ρ has a bounded fourth derivative, then there holds

$$\begin{split} \left\| \rho - \rho_n^{\mathbf{g}} \right\|_{\infty} &= \mathsf{O}(h^3), \quad \left\| \rho - \rho_n^{ka} \right\|_{\infty} = \mathsf{O}(h^3), \\ \left\| \rho - \rho_n^{\mathbf{s}} \right\|_{\infty} &= \mathsf{O}(h^4), \quad \left\| \rho - \rho_n^{ku} \right\|_{\infty} = \mathsf{O}(h^7) \end{split}$$

Superconvergence phenomenon at the set of QI nodes $\{t_i, i=0,\dots,2n\}$ in case of Galerkin, Kantorovich and Kulkarni methods

$$\rho(t_i) - \rho_n^g(t_i) = O(h^4),
\rho(t_i) - \rho_n^{ka}(t_i) = O(h^4),
\rho(t_i) - \rho_n^{ku}(t_i) = O(h^8),$$

Convergence orders of the solutions

Theorem – case k = 3

Assume that the solution ρ has a bounded fourth derivative, then there holds

$$\begin{split} \left\| \rho - \rho_n^{\mathcal{G}} \right\|_{\infty} &= \mathsf{O}(h^4), \qquad \left\| \rho - \rho_n^{ka} \right\|_{\infty} = \mathsf{O}(h^4), \\ \left\| \rho - \rho_n^{\mathfrak{s}} \right\|_{\infty} &= \mathsf{O}(h^4 \varepsilon(h)), \quad \lim_{h \to 0} \varepsilon(h) = 0; \\ \left\| \rho - \rho_n^{ku} \right\|_{\infty} &= \mathsf{O}(h^8). \end{split}$$

Integral equation
$$\rho(x) - \int_0^1 K(x, y) \rho(y) dy = \psi(x), x \in [0, 1],$$
 with

- exact solution $\rho(x) = \exp(-x)\cos(x)$
- kernel $K(x, y) = \exp(xy)$
- function

$$\psi(x) = \exp(-x)\cos(x) + \frac{\exp(x-1)(\cos(1)(1-x)-\sin(1))+x-1}{x^2-2x+2}$$

Integral equation
$$\rho(x) - \int_0^1 K(x, y) \rho(y) dy = \psi(x), x \in [0, 1],$$
 with

- exact solution $\rho(x) = \exp(-x)\cos(x)$
- kernel $K(x, y) = \exp(xy)$
- function

$$\psi(x) = \exp(-x)\cos(x) + \frac{\exp(x-1)(\cos(1)(1-x)-\sin(1)) + x - 1}{x^2 - 2x + 2}$$

We compute the maximum absolute error for increasing values of n

$$\mathbf{e}_n = \max_{\mathbf{z} \in G} |\rho(\mathbf{z}) - \rho_n(\mathbf{z})|,$$

where G is a set of 1500 equally spaced points in [0, 1]. We also compute the numerical convergence order (NCO).

	Methods based on P_2									
n	e_n^g	NCO_g	e _n ka	NCO _{ka}	e _n s	NCOs	e _n ku	NCO _{ku}		
4	2.7(-04)		2.4(-05)		1.3(-04)		2.1(-09)			
8	3.1(-05)	3.1	2.8(-06)	3.1	5.7(-06)	4.5	1.0(-11)	7.7		
16	3.9(-06)	3.0	3.4(-07)	3.0	2.8(-07)	4.3	5.4(-14)	7.6		
32	4.9(-07)	3.0	4.2(-08)	3.0	1.5(-08)	4.2	1.0(-15)	_		
64	6.1(-08)	3.0	5.3(-09)	3.0	8.8(-10)	4.1		-		
128	7.6(-09)	3.0	6.5(-10)	3.0	5.3(-11)	4.0		-		
256	1.1(-10)	3.0	8.1(-11)	3.0	3.2(-12)	4.0		_		
	Methods based on P ₃									
n	e _n ^g	NCO_g	e ^{ka}	NCO _{ka}	e _n s	NCOs	e ^{ku}	NCO _{ku}		
4	3.1(-05)		3.3(-06)		2.3(-06)		1.2(-09)			
8	2.1(-06)	3.9	2.5(-07)	3.7	7.3(-08)	4.9	5.0(-12)	7.9		
16	1.4(-07)	4.0	1.8(-08)	3.8	2.1(-09)	5.1	2.0(-14)	8.0		
32	8.7(-09)	4.0	1.2(-09)	3.9	6.0(-11)	5.1	8.0(-16)	_		
64	5.5(-10)	4.0	8.1(-11)	3.9	1.8(-12)	5.1		-		
128	3.4(-11)	4.0	5.1(-12)	4.0	5.5(-14)	5.0		-		
256	2.1(-12)	4.0	3.2(-13)	4.0	2.4(-15)	_		_		

We compute the maximum absolute error at the QI nodes $\{t_j, j=0,\ldots,2n\}$ for the spline projector P_2

$$\operatorname{es}_n = \max_{\mathbf{z} \in \{t_j, j=0,\dots,2n\}} |\rho(\mathbf{z}) - \rho_n(\mathbf{z})|$$

n	es _n	NCO_g	es _n ^{ka}	NCO _{ka}	es _n ^{ku}	NCO _{ku}
4	1.3(-04)		4.8(-06)		1.3(-09)	
8	5.9(-06)	4.5	2.3(-07)	4.4	4.9(-12)	8.0
16	4.4(-07)	3.7	1.2(-08)	4.3	2.0(-14)	7.9
32	3.0(-08)	3.9	8.3(-10)	3.9	4.4(-16)	_
64	1.9(-09)	3.9	5.6(-11)	3.9		_
128	1.2(-10)	4.0	3.6(-12)	4.0		_
256	7.8(-12)	4.0	2.3(-13)	4.0		_

Superconvergence

Work in progress

Spline quasi-interpolation for the solution of:

- integral equations with Green's function kernels
- weakly singular integral equations
- line integral equations

2D SPLINE SPACES

Bivariate quadratic spline spaces on criss-cross triangulations Δ_{mn} : $S_2^1(\Omega, \Delta_{mn})$

Let:

- $\Omega = [a, b] \times [c, d]$ be a rectangular domain
- m, n be positive integers

•
$$\bar{\mathbf{x}} = (x_i)_{i=-2}^{m+2}$$
, where $x_{-2} = x_{-1} = x_0 = a < x_1 < \ldots < x_{m-1} < b = x_m = x_{m+1} = x_{m+2}$

•
$$\bar{y} = (y_j)_{j=-2}^{n+2}$$
, where $y_{-2} = y_{-1} = y_0 = c < y_1 < ... < y_{n-1} < d = y_n = y_{n+1} = y_{n+2}$

 \bullet Δ_{mn} be the corresponding criss-cross triangulation

Bivariate quadratic spline spaces on criss-cross triangulations Δ_{mn} : $S_2^1(\Omega, \Delta_{mn})$

Let:

- $\Omega = [a, b] \times [c, d]$ be a rectangular domain
- m, n be positive integers

•
$$\bar{\mathbf{x}} = (x_i)_{i=-2}^{m+2}$$
, where $x_{-2} = x_{-1} = x_0 = a < x_1 < \ldots < x_{m-1} < b = x_m = x_{m+1} = x_{m+2}$

•
$$\bar{y} = (y_j)_{j=-2}^{n+2}$$
, where $y_{-2} = y_{-1} = y_0 = c < y_1 < ... < y_{n-1} < d = y_n = y_{n+1} = y_{n+2}$

 \bullet Δ_{mn} be the corresponding criss-cross triangulation

Example: $S^1_2(\Omega,\Delta_{mn})$ [BOX SPLINES: de Boor, Chui, Dagnino, Dahmen, Höllig, Lyche, Micchelli,

Sablonnière, Schumaker, Wang, ...]

- classical spanning functions
- data points also outside the domain

First method [Sablonnière, Dagnino, Demichelis, Lamberti, Remogna, ...]

- spanning functions with support completely in the domain
- data points inside or on the boundary of the domain

Second method [Remogna, 2010]

- classical spanning functions
- data points inside or on the boundary of the domain

Spanning set ${\cal B}$ [Sablonnière, 2003],

 $\mathcal{B} = \left\{ B_{ij} \right\}_{i=0,j=0}^{m+1}$ collection of (m+2)(n+2) quadratic B-splines, with support Σ_{ij} , spanning $S_2^1(\Omega, \Delta_{mn})$

Dimension and basis

$$dim \ S_2^1(\Omega, \Delta_{mn}) = (m+2)(n+2) - 1$$

Dimension and basis

$$dim \ S_2^1(\Omega, \Delta_{mn}) = (m+2)(n+2)-1$$

 \Downarrow

The B-splines in the spanning set $\ensuremath{\mathcal{B}}$ are linearly dependent

Dimension and basis

$$dim \ S_2^1(\Omega,\Delta_{mn})=(m+2)(n+2)-1$$

The B-splines in the spanning set \mathcal{B} are linearly dependent

In order to obtain a basis, we have to remove one B-spline from \mathcal{B} , with C^1 smoothness everywhere or with C^0 smoothness on the boundary of its support

 \bullet Optimal spline quasi-interpolants exact on $\mathbb{P}_2(\mathbb{R}^2)$

$$Q: \mathcal{F} \rightarrow S_2^1(\Omega, \Delta_{mn})$$

 $f(x, y) \approx Qf(x, y)$

• Optimal spline quasi-interpolants exact on $\mathbb{P}_2(\mathbb{R}^2)$

$$Q: \mathcal{F} \rightarrow S_2^1(\Omega, \Delta_{mn})$$

 $f(x, y) \approx Qf(x, y)$

Quasi-interpolation nodes:

$$\{M_{ij} = (s_i, t_j)\}, \ s_i = \frac{x_{i-1} + x_i}{2}, \ t_j = \frac{y_{j-1} + y_j}{2}$$

 $\{A_{ij} = (x_i, y_j)\}$

$$D^{\alpha}f(\overline{x},\overline{y})\approx D^{\alpha}Qf(\overline{x},\overline{y})$$

with:

•
$$\alpha = (\alpha_1, \alpha_2), |\alpha| = \alpha_1 + \alpha_2, 0 \le |\alpha| \le 2$$

- $(\overline{x}, \overline{y}) \in T$ triangle in Δ_{mn} for $|\alpha| = 0, 1$
- $(\overline{x}, \overline{y}) \in int(T)$, T triangle in Δ_{mn} for $|\alpha| = 2$

$\mathsf{Error} \left\| D^lpha(f-Qf) ight\|_\infty$ [Dagnino-Remogna-Sablonnière, 2013]

Let $f \in C^{\nu}(\Omega)$, with $0 \le |\alpha| \le \nu \le 2$, $|\alpha| = 0, 1, 2$, then

$$\|D^{\alpha}(f-Qf)\|_{\infty,T} \leq \overline{C}_{|\alpha|,\nu} \left(\frac{h_T}{h_T^*}\right)^{|\alpha|} h_T^{\nu-|\alpha|} \omega\left(D^{\nu}f,\frac{h_T}{2},\Omega\right).$$

If, in addition, $f \in C^3(\Omega)$, then

$$\|D^{\alpha}(f-Qf)\|_{\infty,T} \leq \overline{C}_{|\alpha|,3} \left(\frac{h_T}{h_T^*}\right)^{|\alpha|} h_T^{3-|\alpha|} \left\|D^3f\right\|_{\Omega},$$

with $h_i = x_i - x_{i-1}$, $k_j = y_j - y_{j-1}$, $h_T = \max\{h_i, k_j\}$, $h_T^* = \min\{h_i, k_j\}$.

Global results only for $|\alpha| = 0, 1$.

$race{\mathsf{Error}} \|D^lpha(f-Qf)\|_\infty$ [Dagnino-Remogna-Sablonnière, 2013]

• For $|\alpha| = 0$, the error bounds are independent of the mesh ratios $\left(\frac{h_T}{h_T^*}\right) \Rightarrow Qf \to f$ in T as $h_T \to 0$.

$\mathsf{Error} \; \| D^lpha(f-Qf) \|_\infty \;$ [Dagnino-Remogna-Sablonnière, 2013]

- For $|\alpha|=0$, the error bounds are independent of the mesh ratios $\left(\frac{h_T}{h_T^*}\right)\Rightarrow Qf\to f$ in T as $h_T\to 0$.
- For $|\alpha|=1,2$, the error bounds depend on the mesh ratios $\left(\frac{h_T}{h_T^*}\right)$. When such ratios are bounded $\Rightarrow D^{\alpha}Qf \rightarrow D^{\alpha}f$ in T as $h_T \rightarrow 0$.

$\mathsf{Error} \left\| D^lpha(f-\mathsf{Q} f) ight\|_\infty$ [Dagnino-Remogna-Sablonnière, 2013]

- For $|\alpha|=0$, the error bounds are independent of the mesh ratios $\left(\frac{h_T}{h_T^*}\right)\Rightarrow Qf\to f$ in T as $h_T\to 0$.
- For $|\alpha|=1,2$, the error bounds depend on the mesh ratios $\left(\frac{h_T}{h_T^*}\right)$. When such ratios are bounded $\Rightarrow D^{\alpha}Qf \rightarrow D^{\alpha}f$ in T as $h_T \rightarrow 0$.

Such ratios are bounded for example in case of uniform triangulation or γ -quasi uniform partitions (0 < $h/h^* \le \gamma$, $\gamma > 1$ constant).

• Test function on $\Omega = [-4, 4]^2$

$$f(x,y) = 3(1-x)^2 e^{(-x^2-(y+1)^2)} - 10\left(\frac{x}{5} - x^3 - y^5\right) e^{(-x^2-y^2)} - \frac{1}{3}e^{(-(x+1)^2-y^2)}$$

- G is a 300 \times 300 uniform rectangular grid of evaluation points in Ω
- f_error = $\max_{(u,v)\in G} |(f-Qf)(u,v)|$
- $D^{(\alpha_1,\alpha_2)}f$ _error = $\max_{(u,v)\in G}|D^{(\alpha_1,\alpha_2)}(f-Qf)(u,v)|$, $|\alpha|=1$

The graphs of f, Qf and |f - Qf| computed on the grid G, considering a uniform triangulation with m = n = 128

The graphs of $D^{(1,0)}f$, $D^{(1,0)}Qf$ and $|D^{(1,0)}(f-Qf)|$ computed on the grid G, considering a uniform triangulation with m=n=128

The graphs of $D^{(0,1)}f$, $D^{(0,1)}Qf$ and $|D^{(0,1)}(f-Qf)|$ computed on the grid G, considering a uniform triangulation with m=n=128

Let $S_2^{(\bar{\mu}^x,\bar{\mu}^y)}(\Omega,\Delta_{mn})$ be the space of bivariate quadratic piecewise polynomials on Δ_{mn} , where

- $\bar{\mu}^x = (\mu_j^x)_{i=1}^{m-1}$ and $\bar{\mu}^y = (\mu_j^y)_{j=1}^{n-1}$ are vectors whose elements can be 1,0,-1 and denote the smoothness C^1 , C^0 , C^{-1} , respectively, across the inner grid lines $x x_i = 0$, $i = 1, \ldots, m-1$ and $y y_j = 0$, $j = 1, \ldots, n-1$,
- while the smoothness across all oblique mesh segments¹ is C¹

¹We call *mesh segments* the line segments that form the boundary of each triangular cell of Δ_{mn} .

Dimension

Given $s \in S_2^{(\bar{\mu}^x,\bar{\mu}^y)}(\Omega,\Delta_{mn})$, we denote by

- L_x^0 (L_x^{-1}) the number of <u>vertical</u> grid lines $x x_i = 0$, i = 1, ..., m 1 across which s has C^0 (C^{-1}) smoothness
- $L_y^0(L_y^{-1})$ the number of <u>horizontal</u> grid lines $y y_j = 0$, j = 1, ..., n 1 across which s has $C^0(C^{-1})$ smoothness

$$\Downarrow$$

$$\dim S_2^{(\bar{\mu}^x,\bar{\mu}^y)}(\Omega,\Delta_{mn})=d_1+d_2+d_3,$$

where

$$d_1 = (m+2)(n+2) - 1$$

$$d_2 = (n+1)L_x^0 + (m+1)L_y^0$$

$$d_3 = (2n+3+L_y^0+L_y^{-1})L_x^{-1} + (2m+3+L_x^0+L_x^{-1})L_y^{-1} + L_x^{-1}L_y^{-1}$$

Spanning set \mathcal{B}

 $\mathcal{B} = \{B_{ij}\}_{i=0,j=0}^{M-1}^{N-1}$ collection of $M \cdot N$ quadratic B-splines with multiple knots, spanning $S_2^{(\bar{\mu}^x,\bar{\mu}^y)}(\Omega,\Delta_{mn})$, where

•
$$M = 2 + \sum_{i=1}^{m-1} m_i^x$$
, $N = 2 + \sum_{j=1}^{m-1} m_j^y$

• $\bar{m}^{x} = (m_{i}^{x})_{i=1}^{m-1}$, $m_{i}^{x} = 2 - \mu_{i}^{x}$, $\bar{m}^{y} = (m_{j}^{y})_{j=1}^{n-1}$, $m_{j}^{y} = 2 - \mu_{j}^{y}$ vectors of knot multiplicity

 B_{ij} smoothness and support, containing multiple knots, change as the number of triangular cells on which the function is nonzero is reduced

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

B-spline basis

$$\sharp \mathcal{B} = M \cdot N > dim \ \mathcal{S}_2^{(ar{\mu}^{\mathcal{E}}, ar{\mu}^{\eta})}(\mathcal{T}_{mn})$$

i.e. the elements of $\ensuremath{\mathcal{B}}$ are linearly dependent.

B-spline basis

$$\sharp \mathcal{B} = M \cdot N > \dim \mathcal{S}_{2}^{(\bar{\mu}^{\xi}, \bar{\mu}^{\eta})}(\mathcal{T}_{mn})$$

i.e. the elements of \mathcal{B} are linearly dependent. In order to obtain a basis, we have to remove one B-spline for each subdomain, with C^1 smoothness everywhere or with C^0 smoothness only on the boundary of its support

Ω_2	Ω_4	Ω_6
Ω_1	Ω_3	Ω_5

- a thick line corresponds to a double knot
- a dotted line corresponds to a triple knot

Applications to NURBS surfaces

We provide:

- bidirectional net of control points (P_{ij}) , $P_{ij} \in \mathbb{R}^3$
- real positive weights (w_{ij})
- suitable knot vectors $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ in the parametric domain Ω

Applications to NURBS surfaces

We provide:

- bidirectional net of control points (\mathbf{P}_{ij}) , $\mathbf{P}_{ij} \in \mathbb{R}^3$
- real positive weights (w_{ij})
- suitable knot vectors $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ in the parametric domain Ω

and we define the NURBS surface

$$\mathbf{S}(x,y) = \frac{\sum_{ij} w_{ij} \mathbf{P}_{ij} B_{ij}(x,y)}{\sum_{ij} w_{ij} B_{ij}(x,y)}$$
$$= \sum_{ij} \mathbf{P}_{ij} R_{ij}(x,y), \quad (x,y) \in \Omega$$

with

$$R_{ij}(x,y) = \frac{w_{ij} \mathbf{P}_{ij} B_{ij}(x,y)}{\sum_{rs} w_{rs} B_{rs}(x,y)}$$

- The B-splines in \mathcal{B} are non negative and satisfy the property of unity partition $\Rightarrow \mathbf{S}(x, y)$ has convex hull and affine transformation invariance properties.
- \bar{x} and \bar{y} have simple knots $\Rightarrow S(x, y)$ is C^1 .
- B-spline locality property \Rightarrow **S**(x, y) interpolates the control points **P**_{ij} whose pre-images are the corner points of each subdomain.
- In case $w_{ij} = w$, $\forall (i,j)$, then $\mathbf{S}(x,y)$ is a B-spline surface. If, in addition, we consider a functional parametrization, $\mathbf{S}(x,y)$ is the spline function defined by the well known bivariate "variation diminishing" operator, reproducing bilinear functions.

We want to reconstruct a bar bell by a suitable quadratic NURBS surface

We consider the bidirectional net of control points $(\mathbf{P}_{ij})_{i=0,j=0}^{8}$,

We consider the bidirectional net of control points $(\mathbf{P}_{ij})_{i=0,j=0}^{8}$,

and the weights $(w_{ij})_{i=0,j=0}^{8}$

$$w_{00} = w_{10} = w_{20} = w_{30} = w_{40} = 0$$

= $w_{50} = w_{60} = w_{70} = w_{80} = 1$,

$$w_{0j} = w_{2j} = w_{4j} = w_{6j} = w_{8j} = 1,$$

 $w_{1j} = w_{3j} = w_{5j} = w_{7j} = \frac{\sqrt{2}}{2}, j = 1, \dots, 11,$

$$W_{0,12} = W_{1,12} = W_{2,12} = W_{3,12} = W_{4,12} = W_{5,12} = W_{6,12} = W_{7,12} = W_{8,12} = 1.$$

If we assume:

- $\Omega = [0,1] \times [0,1]$
- $\bar{x} = (0,0,0,\frac{1}{4},\frac{1}{4},\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{3}{4},1,1,1), \bar{y} = (0,0,0,\frac{1}{7},\frac{2}{7},\frac{2}{7},\frac{3}{7},\frac{3}{7},\frac{4}{7},\frac{4}{7},\frac{5}{7},\frac{5}{7},\frac{6}{7},1,1,1)$

If we assume:

-
$$\Omega = [0,1] \times [0,1]$$

$$\bar{x} = (0, 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}, 1, 1, 1), \bar{y} = (0, 0, 0, \frac{1}{7}, \frac{2}{7}, \frac{2}{7}, \frac{3}{7}, \frac{3}{7}, \frac{4}{7}, \frac{4}{7}, \frac{5}{7}, \frac{5}{7}, \frac{6}{7}, 1, 1, 1)$$

then we can model the object by the C^0 NURBS surface

$$\mathbf{S}(x,y) = \frac{\sum_{i=0}^{8} \sum_{j=0}^{12} w_{ij} \; \mathbf{P}_{ij} \; B_{ij}(x,y)}{\sum_{i=0}^{8} \sum_{j=0}^{12} w_{ij} \; B_{ij}(x,y)}$$

Parametric domain $\boldsymbol{\Omega}$

Applications to elliptic diffusion-type problems with mixed boundary conditions [Cravero-Dagnino-Remogna, 2012]

Let:

- $\Omega \subset \mathbb{R}^2$ be an open, bounded and Lipschitz domain
- $\emptyset \subseteq \Gamma_D, \Gamma_N \subseteq \partial\Omega, \ \partial\Omega = \overline{\Gamma}_D \cup \overline{\Gamma}_N \ \text{and} \ \Gamma_D \cap \Gamma_N = \emptyset$

$$\begin{cases} -\nabla \cdot (K\nabla u) = f, & \text{in } \Omega \\ \frac{\partial u}{\partial \mathbf{n}_K} = g_N & \text{on } \Gamma_N, & \text{(Neumann conditions)} \\ u = g, & \text{on } \Gamma_D & \text{(Dirichlet conditions)} \end{cases}$$

where

- $K \in \mathbb{R}^{2 \times 2}$ is a symmetric positive definite matrix
- $\mathbf{n}_K = K\mathbf{n}$ is the outward conormal vector on Γ_N
- $f \in L^2(\Omega)$
- $g_N \in L^2(\Gamma_N)$
- $g \in H^{1/2}(\Gamma_D)$ (g is the trace on Γ_D of function in $H^1(\Omega) = \{v \in L^2(\Omega): D^\alpha v \in L^2(\Omega), |\alpha| \leq 1\}$)

Reconstruction of the domain

 Ω domain in $\mathbb{R}^2,$ exactly described through the parametrization

$$\mathbf{G}:\Omega_0\to \bar{\Omega}, \qquad \qquad \mathbf{G}(\xi,\eta)=\begin{pmatrix} \mathbf{x}\\ \mathbf{y} \end{pmatrix}$$

expressed as quadratic NURBS surface

$$\mathbf{G}(\xi,\eta) = \sum_{ij} \mathbf{P}_{ij} R_{ij}(\xi,\eta),$$

with $\{\mathbf{P}_{ij}\}$, $\mathbf{P}_{ij} \in \mathbb{R}^2$, bidirectional net of control points

Numerical solution

Weak formulation

 \Downarrow

Numerical solution

Weak formulation

 \Downarrow

Galerkin method (discretized problem depending on the parameter h > 0)

$$u_h$$
 approximation of the solution u : $u_h = \sum_{ij} q_{ij} (R_{ij} \circ \mathbf{G}^{-1})$

 q_{ij} to be determined by solving a linear system

$$\left\{ \begin{array}{ll} -\Delta u = f, & \text{in } \Omega, \\ u = 0, & \text{on } \Gamma_D = \partial \Omega, \end{array} \right.$$

exact solution

$$u(x,y)=\sin(\pi x)\sin(\pi y)$$

- Reproduce the domain → introduce a discontinuity in the first derivative and create the corners → two approaches:
 - place two control points at the same location in physical space;
 - 2 use suitable double knots in the knot vectors.

$$\left\{ \begin{array}{ll} -\Delta u = f, & \text{in } \Omega, \\ u = 0, & \text{on } \Gamma_D = \partial \Omega, \end{array} \right.$$

exact solution $u(x, y) = \sin(\pi x) \sin(\pi y)$

- Reproduce the domain → introduce a discontinuity in the first derivative and create the corners → two approaches:
 - place two control points at the same location in physical space;
 - 2 use suitable double knots in the knot vectors.

In the first case, we ensure that the basis has C^1 continuity throughout the interior of the domain

Example - Approach 1: Double control point

Reproduce the domain:

$$\bar{\xi} = (0, 0, 0, 0.5, 1, 1, 1), \, \bar{\eta} = (0, 0, 0, 1, 1, 1)$$

$$\mathbf{G}(\xi,\eta) = \sum_{i=0}^{3} \sum_{j=0}^{2} \mathbf{P}_{ij} B_{ij}(\xi,\eta) \quad (\xi,\eta) \in \Omega_{0}$$

i	P _{i0}	P_{i1}	P_{i2}
0	(-1,1)	(-0.65, 1)	(0,1)
1	(-1, -1)	(-0.7,0)	(0,0)
2	(-1, -1)	(0, -0.7)	(0,0)
3	(1, -1)	(1, -0.65)	(1,0)

Example – Approach 1: Double control point

- Perform h-refinement, considering m=2, 4, 8, 16, 32, n=1, 2, 4, 8, 16, and smoothness vectors $\bar{\mu}^{\xi}$, $\bar{\mu}^{\eta}$ with elements equal to one
- To obtain a basis, we have to neglect one B-spline either with C¹ smoothness everywhere or with C⁰ smoothness on the boundary of its support

The graphs of

- (a) the exact solution
- (b) the approximation computed with m = 8, n = 4
- (c) the discrete L^{∞} -norm of the error computed on a 35 \times 35 grid of evaluation points in Ω_0

Example - Approach 2: Double knot

Reproduce the domain:

$$\bar{\xi} = (0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1), \, \bar{\eta} = (0, 0, 0, 1, 1, 1)$$

$$\mathbf{G}(\xi,\eta) = \sum_{i=0}^4 \sum_{j=0}^2 \; \mathbf{P}_{ij} \; B_{ij}(\xi,\eta) \quad (\xi,\eta) \in \Omega_0$$

i	P _{i0}	P _{i1}	P _{i2}
0	(-1,1)	(-0.6, 1)	(0, 1)
1	(-1,0)	(-0.55, 0)	(0, 0.5)
2	(-1, -1)	(-0.5, -0.5)	(0,0)
3	(0,-1)	(0, -0.55)	(0.5, 0)
4	(1, -1)	(1, -0.6)	(1,0)

Example - Approach 2: Double knot

- Perform *h*-refinement, considering $m=2,4,8,16,32,\,n=1,2,4,8,16,$ and $\bar{\mu}^{\eta}$ with elements equal to one, while $\bar{\mu}^{\xi}$ with all elements equal to one except the element corresponding to $\xi=\frac{1}{2}$, that is equal to zero
- ullet To obtain a basis, we have to neglect two B-splines either with C^1 smoothness everywhere or with C^0 smoothness only on the boundary of its support, because in this case Ω_0 is subdivided into two subdomains

The graphs of

- (a) the exact solution
- (b) the approximation computed with m = 8, n = 4
- (c) the discrete L^{∞} -norm of the error computed on a 35 \times 35 grid of evaluation points in Ω_0

Discrete L^2 -norm of the error versus interval number per side

(<i>m</i> , <i>n</i>)	(2,1)	(4,2)	(8,4)	(16,8)	(32,16)
L ² -error, Approach 1	7.1(-1)	4.5(-1)	5.3(-2)	6.4(-3)	6.2(-4)
L ² -error, Approach 2	8.3(-1)	2.2(-1)	1.7(-2)	1.6(-3)	1.8(-4)

Powell-Sabin triangulation generated by a uniform 6-direction mesh [Goodman, 1997-2007; Chui-Jiang, 2003; Bettayeb, 2008; Davydov-Sablonnière, 2010]

$$\Omega = [0, m_1 h] \times [0, m_2 h]$$
 $\Delta^{PS}_{m_1, m_2}$ uniform 6-direction mesh

$$S_3^2(\Omega,\Delta_{m_1,m_2}^{PS}) = \left\{ s \in C^2(\Omega) \mid s \mid_{\mathcal{T}} \in \mathbb{P}_3(\mathbb{R}^2), \ T \text{ triangle } \in \Delta_{m_1,m_2}^{PS} \right\}$$

space generated by dilation/translation of the multi-box spline

$$\varphi = (\varphi_1, \varphi_2)$$

Multi-box spline φ_1

• $(m_1 + 1)(m_2 + 1)$ shifts of φ_1 , denoted by

$$\varphi_{1,\alpha}(\mathbf{x},\mathbf{y}) = \varphi_{1,(i,j)}(\mathbf{x},\mathbf{y}) = \varphi_1\left(\frac{\mathbf{x}}{h} - i, \frac{\mathbf{y}}{h} - i\right),$$

with supports centered at the points $c_{\alpha} = c_{i,j} = (ih, jh)$ and $\alpha \in \mathcal{A}_1 = \{(i, j), 0 \le i \le m_1, 0 \le j \le m_2\},$

• normalized multi-box spline $\bar{\varphi_1} = \frac{1}{6}\varphi_1$.

Multi-box spline φ_2

• $(m_1 + 3)(m_2 + 3) - 2$ shifts of φ_2 , denoted by

$$\varphi_{2,\alpha}(\mathbf{x},\mathbf{y}) = \varphi_{2,(i,j)}(\mathbf{x},\mathbf{y}) = \varphi_2\left(\frac{\mathbf{x}}{h} - i, \frac{\mathbf{y}}{h} - j\right),$$

with supports centered at the points $c_{\alpha} = c_{i,j} = (ih, jh)$ and $\alpha \in \mathcal{A}_2 = \{(i,j), -1 \le i \le m_1 + 1, -1 \le j \le m_2 + 1; (i,j) \ne (m_1 + 1, -1), (-1, m_2 + 1)\},$

• normalized multi-box spline $\bar{\varphi_2} = \frac{1}{2}\varphi_2$.

- ullet spanning functions with supports also outside Ω
- data points inside or on the boundary of the domain

Quasi-interpolants using data points inside or on the boundary of the domain [Remogna, 2012]

$$Qf = \sum_{\alpha \in \mathcal{A}_2} [\lambda_{1,\alpha}(f), \lambda_{2,\alpha}(f)] \bar{\varphi}_{\alpha},$$

where

- $\bar{\varphi} = [\bar{\varphi_1}, \bar{\varphi_2}]^T$ and $\bar{\varphi}_{1,\alpha} \equiv 0$ for $\alpha \in \mathcal{A}_2 \backslash \mathcal{A}_1$
- $\lambda_{\mathbf{V},\alpha}(f) = \sum_{\beta \in F_{\mathbf{V},\alpha}} \sigma_{\mathbf{V},\alpha}(\beta) f(A_{\beta}), \quad \mathbf{V} = 1,2$
- The finite set of points $\{A_{\beta}, \ \beta \in F_{\nu,\alpha}\}$, $F_{\nu,\alpha} \subset \mathcal{A} = \{(k,l), \ k = 0, \dots, m_1, \ l = 0, \dots, m_2\}$ lies in some neighbourhood of supp $\bar{\varphi}_{\nu,\alpha} \cap \Omega$

• Q exact on the space of polynomials $\mathbb{P}_3(\mathbb{R}^2)$

Operator Q₁: near-best quasi-interpolant

We obtain the coefficient functionals $\|\lambda_{\nu,\alpha}\|_{\infty}$, $\nu=1,2$, by minimizing an upper bound for the QI infinity norm

Operator Q₁: near-best quasi-interpolant

We obtain the coefficient functionals $\|\lambda_{\nu,\alpha}\|_{\infty}$, $\nu=1,2$, by minimizing an upper bound for the QI infinity norm

Operator Q_2 : quasi-interpolant with superconvergence properties

We impose the superconvergence of the gradient at some specific points of the domain

- the vertices of squares $A_{k,l} = (kh, lh)$,
- the centers of squares $M_{k,l}=((k-\frac{1}{2})h,(l-\frac{1}{2})h),$
- the midpoints $C_{k,l} = ((k \frac{1}{2})h, lh)$ of horizontal edges $A_{k-1,l}A_{k,l}$,
- the midpoints $D_{k,l} = (kh, (l \frac{1}{2})h)$ of vertical edges $A_{k,l-1}A_{k,l}$,

Norm and error estimates

Theorem 1

For the operators Q_v , v = 1, 2 the following bounds are valid

$$\|Q_1\|_{\infty} \leq \frac{53}{6} \approx 8.83, \ \|Q_2\|_{\infty} \leq \frac{185}{9} \approx 20.56.$$

Norm and error estimates

Theorem 1

For the operators Q_{ν} , $\nu = 1,2$ the following bounds are valid

$$\|Q_1\|_{\infty} \leq \frac{53}{6} \approx 8.83, \ \|Q_2\|_{\infty} \leq \frac{185}{9} \approx 20.56.$$

Theorem 2

Let $f \in C^4(\Omega)$ and $|\gamma| = 0, 1, 2, 3$. Then there exist constants $K_{\nu,\gamma} > 0$, $\nu = 1, 2$, such that

$$\|D^{\gamma}(f-Q_{V}f)\|_{\infty} \leq K_{V,\gamma}h^{4-|\gamma|} \max_{|\beta|=4} \left\|D^{\beta}f\right\|_{\infty}.$$

where
$$D^{\beta}=D^{\beta_1\beta_2}=rac{\partial^{|\beta|}}{\partial x^{\beta_1}\partial v^{\beta_2}}$$
, with $\beta_1+\beta_2=|\beta|$.

Example – Approximation of the function

G: uniform rectangular grid of 300×300 points in the domain

$$\mathit{Ef} = \max_{(u,v) \in \mathit{G}} |\mathit{f}(u,v) - \mathit{Qf}(u,v)|, \, \text{for } \mathit{Q} = \mathit{Q}_1, \, \mathit{Q}_2$$

rf: numerical convergence order

	Q_1		Q_2	
$m_1 = m_2$	Ef	rf	Ef	rf
32	8.8(-4)		8.8(-4)	
64	6.0(-5)	3.9	6.0(-5)	3.9
128	3.9(-6)	4.0	3.9(-6)	4.0
256	2.4(-7)	4.0	2.4(-7)	4.0

Example – Approximation of the gradient

$$\nabla Ef = \max_{(u,v) \in G} \left(\left| \frac{\partial}{\partial x} f(u,v) - \frac{\partial}{\partial x} Qf(u,v) \right| + \left| \frac{\partial}{\partial y} f(u,v) - \frac{\partial}{\partial y} Qf(u,v) \right| \right),$$
 for $Q = Q_1, Q_2$

 ∇rf : numerical convergence order

	Q_1		Q_2	
$m_1 = m_2$	∇Ef	$\nabla r f$	∇Ef	$\nabla r f$
32	8.9(-2)		4.5(-2)	
64	8.9(-3)	3.3	5.4(-3)	3.0
128	9.0(-4)	3.3	6.8(-4)	3.0
256	9.8(-5)	3.2	8.6(-5)	3.0

Example – Approximation of the gradient

G': grid of points of superconvergence

$$\begin{split} \nabla \textit{Ef} &= \max_{(u,v) \in \textit{G}'} \Big(\big| \frac{\partial}{\partial x} \textit{f}(u,v) - \frac{\partial}{\partial x} \textit{Qf}(u,v) \big| + \Big| \frac{\partial}{\partial y} \textit{f}(u,v) - \frac{\partial}{\partial y} \textit{Qf}(u,v) \Big| \Big), \\ \text{for } \textit{Q} &= \textit{Q}_1, \, \textit{Q}_2 \end{split}$$

 ∇rf : numerical convergence order

	Q_1		Q_2	
$m_1 = m_2$	∇Ef	$\nabla r f$	∇Ef	$\nabla r f$
32	8.9(-2)		3.4(-2)	
64	8.9(-3)	3.3	2.4(-3)	3.8
128	9.0(-4)	3.3	1.6(-4)	3.9
256	9.8(-5)	3.2	9.8(-6)	4.0

Comparison of the two methods

Near-best QI

- we impose the exactness on $\mathbb{P}_3(\mathbb{R}^2)$ and we minimize an upper bound for the QI infinity norm
- the construction of each functional is independent of the others

Comparison of the two methods

Near-best QI

- we impose the exactness on $\mathbb{P}_3(\mathbb{R}^2)$ and we minimize an upper bound for the QI infinity norm
- the construction of each functional is independent of the others

Superconvergent QI

- we impose the exactness on $\mathbb{P}_3(\mathbb{R}^2)$ and the interpolation condition for the gradient at the specific points for the monomials of $\mathbb{P}_4(\mathbb{R}^2)\backslash\mathbb{P}_3(\mathbb{R}^2)$ and, in case of free parameters, we minimize an upper bound for the QI infinity norm
 - more conditions and functionals involving more data points
 - loss of independence in the functional construction
- best performances in the numerical tests

Work in progress

 \bullet Solution of integral equations on surfaces in \mathbb{R}^3 by spline quasi-interpolation

3D SPLINE SPACES

Partition of the domain $\Omega \subset \mathbb{R}^3$

 $\Omega = [0, m_1 h] \times [0, m_2 h] \times [0, m_3 h] \subset \mathbb{R}^3$ divided into equal cubes

Trivariate spline space $S_4^2(\Omega, \mathcal{T}_m)$

subdivision of a cube into 24 tetrahedra (type-6 tetrahedral partition)

Trivariate spline space $S_4^2(\Omega, \mathcal{T}_m)$

Partition
$$\mathcal{T}_{\mathbf{m}}$$
, $\mathbf{m} = (m_1, m_2, m_3)$

subdivision of a cube into 24 tetrahedra (type-6 tetrahedral partition)

Trivariate spline space $S_4^2(\Omega, \mathcal{T}_{\mathbf{m}})$ [Peters, 1994]

Spline space generated by the scaled translates of the 7-direction box spline B(x, y, z), whose supports overlap with Ω

Support of the 7-direction box spline B(x, y, z):

Truncated rhombic dodecahedron contained in the cube $[-2,3] \times [-2,3] \times [0,5]$ and centered at $\left(\frac{1}{2},\frac{1}{2},\frac{5}{2}\right)$

Optimal spline quasi-interpolants [Dagnino-Lamberti-Remogna, 2012-2014]

• Optimal spline quasi-interpolants exact on $\mathbb{P}_3(\mathbb{R}^3)$

$$Q: \mathcal{F} \to S_4^2(\Omega, \mathcal{T}_{\mathbf{m}})$$

 $f(x, y, z) \approx Qf(x, y, z)$

of near-best type, i.e. with coefficient functionals obtained by minimizing an upper bound for the QI infinity norm.

$$\{M_{ijk}=(s_i,t_j,u_k)\},$$
 with

$$s_0 = 0, \quad s_i = (i - \frac{1}{2})h, \ 1 \le i \le m_1, \qquad s_{m_1 + 1} = m_1 h$$

 $t_0 = 0, \quad t_j = (j - \frac{1}{2})h, \ 1 \le j \le m_2, \qquad t_{m_2 + 1} = m_2 h$
 $u_0 = 0, \quad u_k = (k - \frac{1}{2})h, \ 1 \le k \le m_3, \quad u_{m_3 + 1} = m_3 h.$

$$\{M_{ijk}=(s_i,t_j,u_k)\},$$
 with

$$\begin{array}{lll} s_0=0, & s_i=(i-\frac{1}{2})h, \ 1\leq i\leq m_1, & s_{m_1+1}=m_1h \\ t_0=0, & t_j=(j-\frac{1}{2})h, \ 1\leq j\leq m_2, & t_{m_2+1}=m_2h \\ u_0=0, & u_k=(k-\frac{1}{2})h, \ 1\leq k\leq m_3, & u_{m_3+1}=m_3h. \end{array}$$

$$\{M_{ijk}=(s_i,t_j,u_k)\},$$
 with

$$\begin{array}{lll} s_0=0, & s_i=(i-\frac{1}{2})h, \ 1\leq i\leq m_1, & s_{m_1+1}=m_1h \\ t_0=0, & t_j=(j-\frac{1}{2})h, \ 1\leq j\leq m_2, & t_{m_2+1}=m_2h \\ u_0=0, & u_k=(k-\frac{1}{2})h, \ 1\leq k\leq m_3, & u_{m_3+1}=m_3h. \end{array}$$

$$\{M_{ijk}=(s_i,t_j,u_k)\},$$
 with

$$\begin{array}{lll} s_0=0, & s_i=(i-\frac{1}{2})h, \ 1\leq i\leq m_1, & s_{m_1+1}=m_1h\\ t_0=0, & t_j=(j-\frac{1}{2})h, \ 1\leq j\leq m_2, & t_{m_2+1}=m_2h\\ u_0=0, & u_k=(k-\frac{1}{2})h, \ 1\leq k\leq m_3, & u_{m_3+1}=m_3h. \end{array}$$

Optimal spline quasi-interpolants [Dagnino-Lamberti-Remogna, 2012-2014]

• Optimal spline quasi-interpolants exact on $\mathbb{P}_3(\mathbb{R}^3)$

$$\begin{aligned} \mathsf{Q}: \mathcal{F} &\to S^2_4(\Omega, \mathcal{T}_{\boldsymbol{m}}) \\ f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) &\approx \mathsf{Q} f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \end{aligned}$$

of near-best type, i.e. with coefficient functionals obtained by minimizing an upper bound for the QI infinity norm.

• Quasi-interpolation nodes inside or on the boundary of Ω $\{M_{ijk} = (s_i, t_j, u_k)\}$, with

$$\begin{array}{lll} s_0=0, & s_i=(i-\frac{1}{2})h, \ 1\leq i\leq m_1, & s_{m_1+1}=m_1h \\ t_0=0, & t_j=(j-\frac{1}{2})h, \ 1\leq j\leq m_2, & t_{m_2+1}=m_2h \\ u_0=0, & u_k=(k-\frac{1}{2})h, \ 1\leq k\leq m_3, & u_{m_3+1}=m_3h. \end{array}$$

Quasi-interpolation nodes also outside Ω [Remogna, 2011;
 Dagnino-Lamberti-Remogna, 2013]

Error estimates

Let $f \in C^r(\Omega)$, r = 0, 1, 2, 3. Then there exist constants $\bar{K}_r > 0$, such that

$$||f - Qf||_{\infty} \leq \bar{K}_r h^r \omega(D^r f, h).$$

If in addition $f \in C^4(\Omega)$ then there exists constant $\bar{K}_4 > 0$, such that

$$\|f - Qf\|_{\infty} \leq \bar{K}_4 h^4 \max_{|\beta|=4} \|D^{\beta}f\|_{\infty}.$$

Numerical tests

- Domain = $[a, b]^3$
- $h = \frac{b-a}{m}$, $m = m_1 = m_2 = m_3$, m = 16, 32, 64, 128
- $G = 139 \times 139 \times 139$ uniform grid of evaluation points in Ω
- $\begin{aligned} \bullet \ E_Q f &= \max_{\mathbf{u} \in G} |f(\mathbf{u}) Q f(\mathbf{u})|, \ Q f \in S^2_4(\Omega, \mathcal{T}_{\mathbf{m}}) \\ E_R f &= \max_{\mathbf{u} \in G} |f(\mathbf{u}) R f(\mathbf{u})|, \ R f \in S^1_{2,2}(\Omega, \mathcal{P}_{\mathbf{m}}) \end{aligned}$

R is a spline QI in the space $S^1_{2,2}(\Omega,\mathcal{P}_{\mathbf{m}})$ of trivariate splines on prismatic partitions defined as tensor product of univariate and bivariate C^1 quadratic B-splines. R is obtained as blending sum of uni and bivariate C^1 quadratic spline QIs [Remogna-Sablonnière, 2011]

• r_Rf, r_Of numerical convergence orders

The Marschner-Lobb function f_1

$$\frac{f_1(x,y,z)}{2(1+\beta_1)} \left(1 - \sin\frac{\pi z}{2} + \beta_1 \left(1 + \cos\left(2\pi\beta_2\cos\left(\frac{\pi\sqrt{x^2+y^2}}{2}\right)\right)\right)\right)$$

with $\beta_1 = \frac{1}{4}$ and $\beta_2 = 6$ on the cube $[-1, 1]^3$

m	$E_Q f_1$	$r_{Q}f_{1}$	$E_R f_1$	$r_R f_1$
16	2.0(-1)		1.9(-1)	
32	1.3(-1)	0.6	1.5(-1)	0.4
64	6.5(-2)	1.0	3.2(-2)	2.2
128	2.1(-2)	1.7	4.6(-3)	2.8

The Marschner-Lobb function f_1

$$f_1(x, y, z) = \frac{1}{2(1+\beta_1)} \left(1 - \sin\frac{\pi z}{2} + \beta_1 \left(1 + \cos\left(2\pi\beta_2\cos\left(\frac{\pi\sqrt{x^2+y^2}}{2}\right)\right) \right) \right)$$
with $\beta_1 = \frac{1}{2}$ and $\beta_2 = 6$ on the cube $[-1, 1]^3$

with $\beta_1 = \frac{1}{4}$ and $\beta_2 = 6$ on the cube $[-1, 1]^3$

The isosurface obtained from (a) f_1 and (b) Qf_1 , with m=64, for the isovalue $\rho=1/2$

The smooth trivariate test function of Franke type f_2

$$\begin{split} f_2(x,y,z) &= \\ \frac{1}{2}e^{-10((x-\frac{1}{4})^2 + (y-\frac{1}{4})^2)} + \frac{3}{4}e^{-16((x-\frac{1}{2})^2 + (y-\frac{1}{4})^2 + (z-\frac{1}{4})^2)} \\ + \frac{1}{2}e^{-10((x-\frac{3}{4})^2 + (y-\frac{1}{8})^2 + (z-\frac{1}{2})^2)} - \frac{1}{4}e^{-20((x-\frac{3}{4})^2 + (y-\frac{3}{4})^2)} \end{split}$$

on the cube $[0,1]^3$

m	$E_{Q}f_{2}$	$r_Q f_2$	$E_R f_2$	$r_R f_2$
16	1.7(-2)		6.6(-3)	
32	8.0(-4)	4.4	8.2(-4)	3.0
64	5.2(-5)	3.9	9.8(-5)	3.1
128	3.3(-6)	4.0	8.5(-6)	3.5

The smooth trivariate test function of Franke type f₂

Isosurfaces of Qf_2 for m = 32, with different isovalues

Reconstruction of real world data - CT Head data set

Gridded volume data set consisting of $256 \times 256 \times 99$ data samples obtained from a CT scan of a cadaver head (courtesy of University of North Carolina)

Reconstruction of real world data - CT Head data set

Isosurfaces of the C^2 trivariate quartic spline approximating the CT Head data set with isovalues: (a) $\rho = 60$, (b) $\rho = 90$, with $\sharp G \approx 8.6 \cdot 10^6$ evaluation points

Reconstruction of real world data - MR brain data set

Gridded volume data set of $256 \times 256 \times 99$ data samples obtained from a MR study of head with skull partially removed to reveal brain (courtesy of University of North Carolina)

Reconstruction of real world data - MR brain data set

Isosurface of the C^2 trivariate quartic spline approximating the MR brain data set with isovalue $\rho=40$, with $\sharp G\approx 8.6\cdot 10^6$ evaluation points

Applications to numerical integration [Dagnino-Lamberti-Remogna, 2012-2013]

For any function $f \in C(\Omega)$, we consider the evaluation of the integral

$$I(f) = I(f; \Omega) := \int_{\Omega} f(x, y, z) dx dy dz,$$

For any function $f \in C(\Omega)$, we consider the evaluation of the integral

$$I(f) = I(f; \Omega) := \int_{\Omega} f(x, y, z) dx dy dz,$$

by cubature rules defined by

$$I_{Q}(f) = I(Qf; \Omega) := \sum_{ijk} w_{ijk}^{Q} f(M_{ijk}),$$

with

- M_{ijk} : cubature nodes in Ω . They coincide with the quasi-interpolation nodes
- w_{ijk}^{Q} : cubature weights, linear combinations of $\int_{\Omega \cap suppB_{ijk}} B_{ijk}$
- the precision degree is 3, because Q is exact on $\mathbb{P}_3(\mathbb{R}^3)$

- if
$$f \in C^4(\Omega)$$
, then $\mid I(f) - I_Q(f) \mid = O(h^4)$

Example

- integration domain: $\Omega = [0, 1]^3$
- $m_1 = m_2 = m_3 = m$, h = 1/m and m = 16, 32, 64, 128
- integrand functions
 - $f_1(x, y, z) = e^{((x-0.5)^2 + (y-0.5)^2 + (z-0.5)^2)}$ (smooth test function), $I(f_1) = 0.7852115962$
 - $f_2 = \frac{27}{8}\sqrt{1 |2x 1|}\sqrt{1 |2y 1|}\sqrt{1 |2z 1|}$ (continuous test function), $I(f_2) = 1$

m	$ I(f_1)-I_{Q}(f_1) $	rf ₁	$ I(f_2)-I_{Q}(f_2) $	rf ₂
16	2.9(-5)		4.9(-3)	
32	1.9(-6)	3.9	2.4(-3)	1.1
64	1.3(-7)	3.9	9.3(-4)	1.3
128	8.1(-9)	4.0	3.5(-4)	1.4

Work in progress

 Systematic method for the construction of families of near-best C² quartic spline Qls on type-6 tetrahedral partitions of the space

Our references

- I. Cravero, C. Dagnino, S. Remogna, Quadratic B-splines on criss-cross triangulations for solving elliptic diffusion-type problems, Computational and Mathematical Methods in Science and Engineering (J. Vigo Aguiar Ed.), (2012) 365–376.
- C. Dagnino, P. Lamberti, On the construction of local quadratic spline quasi-interpolants on bounded rectangular domains, J. Comput. Appl. Math. 221, (2008), 367–375.
- C. Dagnino, P. Lamberti, S. Remogna, B-spline bases for unequally smooth quadratic spline spaces on non-uniform criss-cross triangulations, Numer. Algor. 61, (2012), 209–222.
- C. Dagnino, P. Lamberti, S. Remogna, Trivariate quartic splines on type-6 tetrahedral partitions and their applications, Communications in Applied and Industrial Mathematics, 3, (2012), 1–9.
- C. Dagnino, P. Lamberti, S. Remogna, Numerical integration based on trivariate C² quartic spline quasi-interpolants, BIT Numer. Math., 53, (2013) 873–896.
- C. Dagnino, P. Lamberti, S. Remogna, Near-best C² quartic spline quasi-interpolants on type-6 tetrahedral partitions of bounded domains, CALCOLO, Published online: 10 October 2014, (2014).
- C. Dagnino, S. Remogna, P. Sablonnière, Error bounds on the approximation of functions and partial derivatives by quadratic spline quasi-interpolants on non-uniform criss-cross triangulations of a rectangular domain, BIT Numer. Math. 53, (2013), 87–109.
- C. Dagnino, S. Remogna, P. Sablonnière, On the solution of Fredholm integral equations based on spline quasi-interpolating projectors, BIT Numer. Math. 54, (2014), 979–1008.
- S. Remogna, P. Sablonnière, On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains, Computer Aided Geometric Design 28, (2011), 89–101.
- S. Remogna, Constructing good coefficient functionals for bivariate C¹ quadratic spline quasi-interpolants, In: Mathematical Methods for Curves and Surfaces (Eds. M. Daehlen et al.), LNCS 5862, Springer-Verlag Berlin Heidelberq. (2010), 329–346.
- S. Remogna, Quasi-interpolation operators based on the trivariate seven-direction C² quartic box spline, BIT Numer. Math. 51, (2011), 757–776.
- S. Remogna, Bivariate C² cubic spline quasi-interpolants on uniform Powell-Sabin triangulations of a rectangular domain, Advances in Computational Mathematics, 36, (2012) 39–65.

Thank you!