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@ Polynomial vs. generalized splines
@ An approach for the construction of the"optimal® basis
@ Computation with generalized splines

(@) Existence of the optimal basis



Polynomial vs.
generalized splines

Polynomial vs. aeneralized splines (]

o Let [a,b] be a finite and closed interval and let
A = {z;}} with a=x0 <21 < < Tk < Thg1 =d

be a partition of it into k£ + 1 subintervals

Ij:[itj,l’]’+1), jZO,l,...,k,’—l, Ik:[a:k,karl].
e Let m be a positive integer and let M = (ma, ..., mx) be a vector of integers
with1<m; <m, j=1,2,...,k.

Polynomial splines
S(Pm, M, A) = {s | there exist polyomials so, ..., sk in Py, such that:
i) s(z) =sj(z) forzel;, j=0,1,...,k
i) D"sj_1(z;) = D"sj(z;), r=0,....m—m; —1,j=1,...,k }

e The space S(Pm, M, A) has dimension m + Zle m;
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Polynomial vs. aeneralized splines (]

o GENERAUZED SPUNES: spline segments are not restricted to be
polynomials
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Polynomial vs. aeneralized splines (]
o GENERAUZED SPUNES: spline segments are not restricted to be
polynomials
_ e Examples: s;(x) €

r— X,
> <17m’~-~71p_2:(1_t)uj7tnj>' t= > ' D=2, m5,p5 € [p,oo)
Tj+1 — T

> <17x’ boa 7xp_2:eujz’e_wjx>' p=2
> (1,cosh(a;x),sinh(a;x), cos(bjx),sin(bjx)), a;,b; € R, aj,b; >0



Polynomial vs.
generalized splines

Polynomial vs. aeneralized splines (]
o GENERAUZED SPUNES: spline segments are not restricted to be
polynomials
_ e Examples: s;(x) €

> <1,ac,...,:rp_2,(1—t)“f,t”f>, t= D=2, mj, 15 € [p,00)

> <1,m, . ,a:p_Q,e“’J'z,e_“’J'x>, p>=2
Tjt1 =T
> (1,cosh(a;x),sinh(a;x), cos(bjx),sin(bjx)), a;,b; € R, aj,b; >0

> (1, cosh(a;z) cos(bjx),cosh(a;x) sin(bjx),sinh(ajx) cos(bjz), sinh(a;x) sin(b;x))



Polynomial vs.
generalized splines

Polynomial vs. aeneralized splines (]
o GENERAUZED SPUNES: spline segments are not restricted to be
polynomials
_ e Examples: s;(x) €

> <1,ac,...,:rp_2,(1—t)“f,t”f>, t= D=2, mj, 15 € [p,00)

> <17x’ boa 7xp_2:eujz’e_wjx>' p=2
Tjt1 =T
> (1,cosh(a;x),sinh(a;x), cos(bjx),sin(bjx)), a;,b; € R, aj,b; >0
> (1, cosh(a;z) cos(bjx),cosh(a;x) sin(bjx),sinh(ajx) cos(bjz), sinh(a;x) sin(b;x))

> (1,cos(ajx),sin(a;x), x cos(a;x), rsin(a;jz))
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Polynomial vs.
generalized splines

Polynomial vs. ceneralized splines L]

o GENERALIZED SPUNES: spline segments are not restricted to be
polynomials
e Examples: s;(z) €
> <1,x, .. ,xp_Q,e“’jz,e_wjz>v p=2

> (L, a2 (1=t t = P22, mj, 1y € [p,00)

Tjt1 -7
> (1,cosh(a;x),sinh(a;x), cos(bjx),sin(bjx)), a;,b; € R, aj,b; >0
> (1, cosh(a;z) cos(bjx),cosh(a;x) sin(bjx),sinh(ajx) cos(bjz), sinh(a;x) sin(b;x))
> (1,cos(ajx),sin(a;x), x cos(a;x), rsin(a;jz))

e exact reproduction of salient functions

e shape-preserving approximation

e alternative to the rational model (Non-Uniform Rational B-splines)

[Schoenberg; J. Math. Mech. 1964],[Jerome,Schumaker; J. Approx. Theory 1976],[Lyche Winter; J.
Approx. Theory 1979],[Barry; Constr. Approx. 1996],[Carnicer,Mainar,Pefia; Constr. Approx. 2003],
[Costantini,Lyche,Manni; Numer. Math. 2005],[Buchwald, Miihlbach; JCAM 2003],[Wang,Fang;

JCAM 2008],[Ayalon,Dyn,Levin; J. Approx. Theory 2009],[Bosner,Rogina;Adv. Comput. Math. 2013],...



Polynomial vs.
generalized splines

Suitarle function spaces

e Applications in
— Design, Geometric Modeling
[Kvasov, Sattayatham; JCAM 1999],[Costantini; Comput. Aided Geom. Design 2000],[Mainar,
Pefia, Sanchez-Reyes; Comput. Aided Geom. Design 2001],. . .,[Brilleaud, Mazure; Comput. Math.
Appl. 2012, Numer. Algorithms 2014]

— Multiresolution Analysis
[Khalidov, Unser;Proc. IEEE ICASSP, 2005],[Lee, Yoon; Abstr. Appl. Anal. 2011],[Lyche, Mazure;
East J. Approx 2011]

— Isogeometric Analysis
[Hughes, Cottrell,Bazilevs; CMAME, 2005],[Manni, Pelosi, Sampoli; CMAME 2011, JCAM
2011],[Bracco, Berdinsky; CMAME 2014],[Bracco, Berdinsky, Cho, Kim; CMAME 2014], ...
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Suitarle function spaces

e Applications in
— Design, Geometric Modeling
[Kvasov, Sattayatham; JCAM 1999],[Costantini; Comput. Aided Geom. Design 2000],[Mainar,
Pefia, Sanchez-Reyes; Comput. Aided Geom. Design 2001],. . .,[Brilleaud, Mazure; Comput. Math.
Appl. 2012, Numer. Algorithms 2014]

— Multiresolution Analysis
[Khalidov, Unser;Proc. IEEE ICASSP, 2005],[Lee, Yoon; Abstr. Appl. Anal. 2011],[Lyche, Mazure;
East J. Approx 2011]

— Isogeometric Analysis
[Hughes, Cottrell,Bazilevs; CMAME, 2005],[Manni, Pelosi, Sampoli; CMAME 2011, JCAM
2011],[Bracco, Berdinsky; CMAME 2014],[Bracco, Berdinsky, Cho, Kim; CMAME 2014], ...

Optimal
Normalized
Totally
Positive

e suitable spaces must have the ONTP basis
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Polynomial vs.
generalized splines

Suitarle function spaces

e Applications in
— Design, Geometric Modeling
[Kvasov, Sattayatham; JCAM 1999],[Costantini; Comput. Aided Geom. Design 2000],[Mainar,
Pefia, Sanchez-Reyes; Comput. Aided Geom. Design 2001],. . .,[Brilleaud, Mazure; Comput. Math.
Appl. 2012, Numer. Algorithms 2014]

— Multiresolution Analysis
[Khalidov, Unser;Proc. IEEE ICASSP, 2005],[Lee, Yoon; Abstr. Appl. Anal. 2011],[Lyche, Mazure;
East J. Approx 2011]

— Isogeometric Analysis
[Hughes, Cottrell,Bazilevs; CMAME, 2005],[Manni, Pelosi, Sampoli; CMAME 2011, JCAM
2011],[Bracco, Berdinsky; CMAME 2014],[Bracco, Berdinsky, Cho, Kim; CMAME 2014], ...

Optimal
Normalized
Totally

Positive
(For polynomials/polynomial splines: ONTP basis = Bernstein/B-spline basis)

e suitable spaces must have the ONTP basis

e non-uniform knots, multiple knots, parametric continuity
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Polynomial vs.
generalized splines

ONTP rases for aeneralized spline spaces

e Find explicit expressions for the basis functions and/or computational algorithms
for their evaluation

e Determine under which conditions the ONTP basis exists (lengths of knot
intervals, values of parameters, type of local spaces)
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Polynomial vs.
generalized splines

ONTP rases for aeneralized spline spaces

e Find explicit expressions for the basis functions and/or computational algorithms
for their evaluation

e Determine under which conditions the ONTP basis exists (lengths of knot
intervals, values of parameters, type of local spaces)

» General approaches for a single generalized polynomial space

[Carnicer,Mainar,Pefia; Constr. Approx. 2003],[Mazure; Numer. Math. 2008, 2011],[Mainar,Pefia;
Comput. Math. Appl. 2010],[Brilleaud,Mazure; Comput. Math. Appl. 2012]
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Polynomial vs.
generalized splines

ONTP rases for aeneralized spline spaces

e Find explicit expressions for the basis functions and/or computational algorithms
for their evaluation

e Determine under which conditions the ONTP basis exists (lengths of knot
intervals, values of parameters, type of local spaces)

v

General approaches for a single generalized polynomial space

[Carnicer,Mainar,Pefia; Constr. Approx. 2003],[Mazure; Numer. Math. 2008, 2011],[Mainar,Pefia;
Comput. Math. Appl. 2010],[Brilleaud,Mazure; Comput. Math. Appl. 2012]

> In the spline setting, approaches for the construction and analysis of existence of
the ONTP basis are available for particular spaces only
[Bosner,Rogina; Numer. Algor. 2007],[Costantini; Comput. Aided Geom. Design 2000],[Wang,Fang;
JCAM 2008],[Xu,Wang;J. Comput. Sci. Technol. 2007]



Bases for polynomial
splines

How the Berstein Rasis was introduced in CAGD
2 Rabut, Comput. Aided-Design 2000; Farouki, Comput. Aided Geom. Des. 2012

1
o Bézier basis for the space P,, of degree-n

polynomials (1966):

0 . fas
B _ _ AT AN RN AW ’ n=
fO,n—la fz,n(t) —Z( 1) (]> (i—l)t f3,3 ’

j=i

fi,3

withi=1,...,n and t € [0,1]

0
e Bézier curve: given an initial point po and > fin(0) =0, fin(1)=1
n vectors a1, ..., an > i(’Tn)(O):O,r:L...,i—l
Q) =0r=1,..,n—i

c(t) = po + Z a;fin(t)
i=1

» fi» monotonically increasing



Bases for polynomial
splines

o Bézier basis for the space P,, of degree-n
polynomials (1966):

fon=1, fin(t)=> (-1)" (?) (i_ .

j=i

withi=1,...,n and t € [0,1]

e Bézier curve: given an initial point po and
n vectors ai,...,an

p0+zazfzn sz i (

Bo,n =1- fl,n Bi,n = fi,n — fi+1,n for 1 = 1, 000

1

0

o The Bernstein basis can be expressed in terms of the f's:

How the Berstein rasis was introduced in CAGD
3 Rabut, Comput. Aided-Design 2000; Farouki, Comput. Aided Geom. Des. 2012

fi,3
f2,3
f3,3

> fim(0) =0, fin(l)=1
> 10 =0,r=1,...,i—1
f(”( )=0r=1,....,n—i

» fi» monotonically increasing

,TL*l Bn,n:fn,n



Bases for polynomial
splines

How the Berstein rasis was introduced in CAGD

3 Rabut, Comput. Aided-Design 2000; Farouki, Comput. Aided Geom. Des. 2012

1
o Bézier basis for the space P,, of degree-n

polynomials (1966):

n . fas
B _ _ Z AT AN RN AW ’ n=
fO,n = 1, fz,n(t) - ( 1) (]> (Z _ 1)t f3,3 ’

j=i

fi,3

withi=1,...,n and t € [0,1]

0 1
e Bézier curve: given an initial point po and » fin(0) =0, fin(l)=1
n vectors ai,...,an >f(r)()_0r:1,...,i—1
(r) s
=0,r=1,...,n—1
p0+zazfzn sz 1n f () i X )

> fi,n monotonically increasing

o The Bernstein basis can be expressed in terms of the f's:
B()’n =1- fl,n Bi,n = fi,n — fi+1,n for i = 1, .., — 1 Bn,n = fn’n
e From the partition-of-unity property of the Bernstein basis: fi, = Z I
5=
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Bases for polynomial
splines

A construction for the polynomial B-spline rasis [l]
o A = {z;} knot partition, M = {m;} multiplicities of {z;}

m S(Pp, M, A) spline space
o A™ = {t;} extended partition

my =max{p >0 | t; =tisp}+1, my =max{p>0|tip =t;} +1
{Ni,m} B-spline basis

|
|
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A construction for the polynomial B-spline rasis [l]

o A = {z;} knot partition, M = {m;} multiplicities of {x;}
s S(Pr, M, A) spline space

o A™ = {t;} extended partition
my =max{p >0 | t; =tisp}+1, my =max{p>0|tip =t;} +1
{Ni,m} B-spline basis !

cletfin=) Nim w3
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e [rom the properties of {N; ,}

(1) fim(z) =0 for x < t;<=compact support
ti tit1 titm—1 titm
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A construction for the polynomial B-spline rasis [l]

o A = {z;} knot partition, M = {m;} multiplicities of {x;}
s S(Pr, M, A) spline space

o A™ = {t;} extended partition
my =max{p >0 | t; =tisp}+1, my =max{p>0|tip =t;} +1
{Ni,m} B-spline basis !

o Let f’i,m =S Z]Vj,m - )
jzi
e [rom the properties of {N; ,}

(1) fi,m(z) =0 for z < t;<=compact support
) t; tit1 titm—1 titm
() fim(z) =1 for x > titm—1 < partition of unity
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A construction for the polynomial B-spline rasis [l]
o A = {z;} knot partition, M = {m;} multiplicities of {x;}

m S(Pp, M, A) spline space
o A™ = {t;} extended partition

mi =max{p >0 | ti =tiyp}+1, my =max{p >0 | tip =t} +1

{Ni,m} B-spline basis !

cletfin=) Nim w3

jzi
e From the properties of {N;..}
(1) fi,m(z) =0 for z < t;<=compact support

- ti tit1 titm—1 titm
(i) fim(z) =1 for x > titm—1 <= partition of unity

(i) fimis C™™ 1 att,
L
fiom is O™ M m-17 gt titm—1 < the least continuity among {N; .}
fi,m is ijmjil at x;, for t; < T < titm—1
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A construction for the polynomial B-spline rasis [l]

o A = {z;} knot partition, M = {m;} multiplicities of {x;}
s S(Pr, M, A) spline space

o A™ = {t;} extended partition
my =max{p >0 | t; =tisp}+1, my =max{p>0|tip =t;} +1
{Ni,m} B-spline basis !

cletfin=) Nim w3

jzi
o From the properties of {N;..}
(1) fi,m(z) =0 for z < t;<=compact support

- t; tit1 titm—1 titm
(i) fim(z) =1 for x > titm—1 <= partition of unity

(i) fim is C™™ 1 at ¢
L
fiom is O™ M m-17 gt titm—1 < the least continuity among {N; .}
fi,m is ijmjil at x;, for t; < T < titm—1

(V) fi,m is monotonically increasing<=from the zero property of polynomial splines,
fim >0



Bases for polynomial
splines

A construction for the polynomial B-spline rasis L]

Transition function

We name transition function any function that satisfies (i)—(ii)—(iii)

|
g



Bases for polynomial
splines

A construction for the polynomial B-spline rasis L]

Transition function

We name transition function any function that satisfies (i)—(ii)—(iii)

1

fi,m
L4 Nitm, == f7m - fi+1,m,

t; tit1 titm—1 titm

(



Bases for polynomial
splines

A construction for the polynomial B-spline rasis L]

Transition function

We name transition function any function that satisfies (i)—(ii)—(iii)

1

fiim
° Nium, = f'ium, - fz'+1,m,

1 -~ t; tit1 titm—1 litm

F 1) = 80

r=0,...,m—mi+m71—1

fi,m can be uniquely determined by
2200 m 2. L | solving the linear system of the con-

\ 7 tinuity conditions at the knots:

0 A TR * 4DoF=3CC

(also in the case of multiple knots)

ﬁ
|
o

e, m—m; —1
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The B-spline basis of
generalized splines

Generalizing the construction

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition

o We let each piece of f;n, belong to a different m-dimensional function space
Ujm = <1, UG 2y« -y Uj7m> associated with [xj, xj_‘_l}
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Generalizing the construction

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition

o We let each piece of f;n, belong to a different m-dimensional function space
Ujm = <1, UG 2y« -y Uj7m> associated with [xj, xj_‘_l}

t; titm—1



The B-spline basis of
generalized splines
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Generalizing the construction

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition

o We let each piece of f;n, belong to a different m-dimensional function space
Ujm = <1, UG 2y« -y Uj7m> associated with [xj, xj_‘_l}

1, x,cosx,sina

t; titm—1



The B-spline basis of
generalized splines

Generalizing the cons—truetlon

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition

o We let each piece of f;n, belong to a different m-dimensional function space
Ujm = (1,uj2,...,ujm) associated with [z}, z;41]

=
|

(1, x, cosh x, sinh x)

1, x,cosx,sina

t; titm—1



The B-spline basis of
generalized splines

Generalizing the cons—truetlon

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition

o We let each piece of f;n, belong to a different m-dimensional function space
Ujm = (1,uj2,...,ujm) associated with [z}, z;41]

E
=

(1, x, cosh x, sinh x)

1, x,cosx,sina

t; titm—1



The B-spline basis of
generalized splines

Generalizing the construction

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition

o We let each piece of f;n, belong to a different m-dimensional function space
Ujm = (1,uj2,...,ujm) associated with [z}, x;41]

e In analogy to the polynomial case, we determine f; ,, by imposing suitable
continuity conditions at the knots:

(1, z, 1:2., :1'3)

.fi(;)l(ti*):o r=0,...,m—mf—1

(1, z, cosh x, sinh z)
* fim@T) = fial) r=0,..,m—m; -1
Vj st t; < x5 < titm—1 O;_

l,x,cosx,sina

titm—1

’f(T)(z+mfl):5T70 T:()a"wm_milikmfl_l



The B-spline basis of
generalized splines

Generalizing the construction

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition

o We let each piece of f;n, belong to a different m-dimensional function space

Ujm = (1,uj2,...,ujm) associated with [z}, x;41]

e In analogy to the polynomial case, we determine f; ,, by imposing suitable
continuity conditions at the knots:

(1, z, arz., :1'3)

.fi(;)l(ti*):o r=0,...,m—mf—1

(1, z, cosh x, sinh z)
* fim@y) = fim@) =0, m—m; 1
Vj st t; < x5 < titm—1 O;_

l,x,cosx,sina

titm—1

’f(r)(z+mfl):57“70 T:()?"'ym_milikmfl_l

e 3! solution by properly choosing U, ™ QEC spaces
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The B-spline basis of
generalized splines

EC and QEC spaces

Quasi Extended Chebyshev space [= Mazure, Numer. Math. 2008]
An m-dimensional space U € C™*(I), m > 2, is QEC on I C R if:

— any Hermite interpolation problem in m data in I, with at least two distinct
points, has a unique solution in U/

— equivalently, for m > 2, any nonzero element of U/ with at least two distinct zeros
vanishes at most m — 1 times in I, counting multiplicities
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The B-spline basis of
generalized splines

EC and QQEC spaces

Extended Chebyshev space
An m-dimensional space U ¢ C™'(I) is EC on I C R if:

— any Hermite interpolation problem in m data in I has a unique solution in U

— equivalently, any nonzero element of U has at most m — 1 zeros in I, counting
multiplicities

Quasi Extended Chebyshev space
An m-dimensional space U € C™ *(I), m > 2, is QEC on I C R if:

— any Hermite interpolation problem in m data in I, with at least two distinct
points, has a unique solution in U/

— equivalently, for m > 2, any nonzero element of I/ with at least two distinct zeros
vanishes at most m — 1 times in I, counting multiplicities
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The B-spline basis of
generalized splines
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EC and QQEC spaces

Extended Chebyshev space
An m-dimensional space U ¢ C™'(I) is EC on I C R if:

— any Hermite interpolation problem in m data in I has a unique solution in U

— equivalently, any nonzero element of U has at most m — 1 zeros in I, counting
multiplicities

Quasi Extended Chebyshev space

An m-dimensional space U € C™ *(I), m > 2, is QEC on I C R if:
— any Hermite interpolation problem in m data in I, with at least two distinct
points, has a unique solution in U/

— equivalently, for m > 2, any nonzero element of I/ with at least two distinct zeros
vanishes at most m — 1 times in I, counting multiplicities

e U QEC = [U is QEC, g(z) - U is QEC for any g(z) > 0, DU is not QEC in
general
o Uy = (1,uz,...,Un) and DUpm, = (us, ..., ul,) are QEC spaces on I <= Uy,
has the Bernstein (ONTP) basis on



The B-spline basis of
generalized splines
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Generalized spline spaces and ONTP rases

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition
o Uy = {Ujm} such that Ujm = (1, uj2,...,ujm) and DUjm = (W, ..., Ujm)
are QEC on [z, zj4+1], V)
Piecewise quasi Chebyshevian spline space
SUm,M,A) = {s \ there exist s; € Uj m,Vj, such that:
i) s(z) = s;(z) for x € [x;,z541), V7;
II) DTSj_l(xj) = DTSj(.Tj) for r = 0, cee, M — My — 1, V_] }

e The space S(Un, M, A) has dimension m + Z]. m;
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Generalized spline spaces and ONTP rases

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition

o Uy = {Ujm} such that Ujm = (1, uj2,...,ujm) and DUjm = (W, ..., Ujm)
are QEC on [z, zj4+1], V)

Piecewise quasi Chebyshevian spline space
SUm,M,A) = {s } there exist s; € Uj m,Vj, such that:
i) s(z) = s;(z) for x € [z;,z;11), VJ;
II) D’"sj_l(a:j) = DTSj(.Tj) for r = 0, cee, M — My — 1, V_] }
e The space S(Un, M, A) has dimension m + Z]. m;
If a spline space S(U,,, M, A) has the ONTP basis
o {fim} is a basis for S(U,, M, A)

e Vi, fim is positive and monotonically increasing
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Generalized spline spaces and ONTP rases

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition

o Uy = {Ujm} such that Ujm = (1, uj2,...,ujm) and DUjm = (W, ..., Ujm)
are QEC on [z, zj4+1], V)

Piecewise quasi Chebyshevian spline space
SUm,M,A) = {s } there exist s; € Uj m,Vj, such that:
i) s(z) = s;(z) for x € [z;,z;11), VJ;
II) Drsj_l(a:j) = DTSj(.Tj) for r = 0, cee, M — My — 1, V_] }
e The space S(Un, M, A) has dimension m + Z]. m;
If a spline space S(U,,, M, A) has the ONTP basis
o {fim} is a basis for S(U,, M, A)

e Vi, fim is positive and monotonically increasing

o {Ni,m}, s.t. N,jm,, = f,jm,, = f,j.;.l’m is the ONTP basis of S(um, M, A)
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Generalized spline spaces and ONTP rases

o A = {z,} knot partition, M = {m;} multiplicities of {z;}, A™ = {¢;} extended
partition

o Uy = {Ujm} such that Ujm = (1, uj2,...,ujm) and DUjm = (W, ..., Ujm)
are QEC on [z, zj4+1], V)

Piecewise quasi Chebyshevian spline space
SUm,M,A) = {s } there exist s; € Uj m,Vj, such that:
i) s(z) = s;(z) for x € [z;,z;11), VJ;
II) DTSj_l(a:‘j) = DTSj(.Tj) for r = 0, cee, M — My — 1, V_] }
e The space S(Un, M, A) has dimension m + Z]. m;
If a spline space S(U,,, M, A) has the ONTP basis
o {fim} is a basis for S(U,, M, A)
e Vi, fim is positive and monotonically increasing

o {Ni,m}, s.t. N,jm,, = f,jm,, = f,j.;.l’m is the ONTP basis of S(um, M, A)

e f;m vanishes at least m — m? times at ¢; (exactly if mi > 1) and 1 — fim
vanishes at least miLer,l — 1 times at t;4m—1 (exactly if miLer,l > 1)



The B-spline basis of
generalized splines

B-spline and Bernstein rases

B-spline basis
We say that N;m, i =1,...,m + K is the B-spline basis of S(U, M, A) if
i) support property: N;m(z) =0, © & (ti, titm)
i) positivity property: Nim(z) >0, x € (ti,titm)
iii) partition of unity property: Zl Nim(z) =1, Vz € [a, ]

iv) endpoint property: N; ., vanishes m — mi times at ¢; (exactly if m; > 1) and
. @ I
m — mgy, times at t;1n, (exactly if m;%,, > 1)

Bernstein basis
Let Uy, C C™ *(I) be an m-dimensional space. Given a,b € I, a < b, we say that
Bim,1=0,...,m — 1 is the Bernstein basis of U, relative to [a, b] if

i) zero property:

— Bo,m(a) # 0 and By,,, vanishes m — 1 times at b

— Bm—1,m(b) # 0 and By,—1,m vanishes m — 1 times at a
— for 1 <i <m—2, B; m, vanishes exactly 7 times at a and exactly m — 1 — i times at b

UUUTUUUUTUUUUUUUN]

ii/iii) positivity/normalization properties: B; m(z) > 0, z € (a,b), Z 185 () = 1l
3



Computation

Computinag with aeneralized splines (]

e Many approaches to address specific spaces

GB-splines [Kvasov, Sattayatham, JCAM 1999]

— geometric construction [Costantini, CAGD 2000; Costantini, Manni, Rend. Mat. 2006]

generalized divided differences [Muhlbach, JCAM 2006]

integral recurrence relation [Bister, Prautzsch, Curv. and Surf. in CAGD 1997]

o Difficult to apply for spline spaces of very general £orm, i.e.
— non-uniform and multiple knots

— Uj m different on each interval [x;,2;4+1)
— spaces Uj . have high dimension (m > 4)

— many of the generators of U; ,, = (1,u;,2,...,U;jm) are non-polynomial
functions



Computation

Computing with aeneralized splines L]

e Transition functions easily allow for handling any kind of space and mixing
different spaces

W besnd

Urm =Usm = (1,z,22,2%)  Usm = Usm = (1,, coshz,sinh x)

la,b] = [0, 8] A ={1,57} M ={1,3,1}



Computation

Computing with aeneralized splines L]

e Transition functions easily allow for handling any kind of space and mixing
different spaces

{fi,m} ﬂ i E i i\ / g%\<: {Nim}
m =06

Uj m = (1,z,cosz,sinz, cosh z, sinh ) Vj

[a,b] = [0, 6.5] A ={1,3,4,45,55} M =1{1,3,1,1,1}



Computation

Computing with aeneralized splines L]

e Transition functions easily allow for handling any kind of space and mixing
different spaces

g {fz,m} {Bz,m}

m==6 K<< I>>] [=]pel+

Um = (1, z, cos z, sin x, cosh(¢z), sinh(¢pz)), $ =1,...,20
[a,b]=[0,1] A=0 M=0



Computation

Computing with aeneralized splines L]

e Transition functions easily allow for handling any kind of space and mixing
different spaces

-777] byt

(KIS I] =)o +]

Uj m = (1,z,cosz,sinx, cosh(p;x),sinh(¢;x)), ¢; =1,...,20, Vj
[a,b] = [0, 6.5] A ={1,3,4,45,5.5} M ={1,3,1,1,1}
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Some iInsights on existence

o For generalized spline spaces, an "optimal" basis does not always exist

— Bernstein basis: existence is characterized in terms of critical length of the
QEC space [Carnicer, Mainar, Pefia, Mazure, Brilleaud]
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QEC space [Carnicer, Mainar, Pefia, Mazure, Brilleaud]

e What about transition functions?
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Some iInsights on existence

o For generalized spline spaces, an "optimal" basis does not always exist

— Bernstein basis: existence is characterized in terms of critical length of the
QEC space [Carnicer, Mainar, Pefia, Mazure, Brilleaud]

e What about transition functions?

Bernstein basis: Q

{fz m} {Bz,m}
; 1.5708 J 1.5708
Math Ap "r N2

(KK ) (=]

=5
Um = (1, cosh z cos z, cosh z sin z, sinh x cos z, sinh  sin z)

[a,0] =[0,d], d=%,...,2m A=0 M=




Existence of the optimal
basis

Some iInsights on existence

o For generalized spline spaces, an "optimal" basis does not always exist

— Bernstein basis: existence is characterized in terms of critical length of the
QEC space [Carnicer, Mainar, Pefia, Mazure, Brilleaud]

e What about transition functions?

Bernstein basis: Q
{fi,m} {Bi,m}
1.5708 J 1.5708
KK [k
m=>5

r\eaud and Mazure
.

Bri

Comput- ath. ApP! 2012

3T
ee (%20

U = (1, cosh z cos(fz), cosh z sin(fz), sinh x cos(0z), sinh z sin(0z))
[a,b] =[0,d], d=F,...,2m

A=0 M=




Existence of the optimal
basis

Some iInsights on existence

o For generalized spline spaces, an "optimal" basis does not always exist

— Bernstein basis: existence is characterized in terms of critical length of the
QEC space [Carnicer, Mainar, Pefia, Mazure, Brilleaud]

e What about transition functions?

B-spline basis:

{fi,;m} J \ {Nim}
4

(KIS 1] (=) +]

m=5 (0; =1 except 03 =1,...,3)

Uj m = (1, coshx cos(f;x), cosh x sin(f;x), sinh x cos(f;x), sinh z sin(;z)), Y

[a,b] = [0,5.5] A ={1,15,2545} M={1,1,1,1}

UUUTUUUUTUUUUUUUN]
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Existence of the optimal
basis

Some iInsights on existence

o For generalized spline spaces, an "optimal" basis does not always exist

— Bernstein basis: existence is characterized in terms of critical length of the
QEC space [Carnicer, Mainar, Pefia, Mazure, Brilleaud]

e What about transition functions?

B-spline basis:

{fi,;m} J \ {Nim}
4

(KIS 1] (=) +]

m=5 @jzlexcept93:1,...,3]

Uj,m = (1,cosh cos(f;x), coshz sin(f;x), sinh x cos(;z), sinh z sin(6;x)) v

[a,b] = [0, 5.5] A ={1,15,2545} M={1,1,1,1}

o Existence of the B-spline basis depends on the length of each knot interval
(particular cases studied by [Schumaker, Mazure, Brilleaud])

/



Existence of the optimal
basis

B-spline vs. ONTP Rrasis

o A spline space S’(I:lm, M, A) is obtained from S(U.., M, A) by knot insertion if
— SUm, M, A) and S(U,n, M, A) have section spaces of the same dimension,

that is m L .
- SUm, M,A) C SUpn,M,A)

|

UUUTUUUUTUUUUUUUN]

Equivalent conditions

i) S(Um,M,A) has the B-spline basis and any spline space obtained from it by
knot insertion has the B-spline basis too

ii) There exists the Optimal Normalized Totally Positive basis in S(U,, M, A)

\ \
\
N/

zjip1 —x; =35 my =1, Ujpm = (1,z, 22, cosz,sinz), Vj
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ONTP Rrasis and weight functions

Weight functions

A sequence (wo, ..., Wwm—2) is a system of piecewise weight functions for
S(Um,M,A) if

i) wp >0, Vk=0,...,m—2
Cm—k—mj,k—l

i) wyg is at z;, with m; ; := min (m;, m — k)



Existence of the optimal
basis

ONTP Rrasis and weight functions

Weight functions
A sequence (wo, ..., Wwm—2) is a system of piecewise weight functions for
S(Um,M,A) if

i) wp >0, Vk=0,...,m—2
Cm—k—mj,k—l

i) wyg is at z;, with m; ; := min (m;, m — k)

e With any system of p.w.f., we can associate piecewise aeneralized derivatives

1
Lov = 2, Lww=—DLi_1v, k=1,...,m—2
wo Wk
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ONTP rasis and weiaht functions

Weight functions

A sequence (wo, ..., Wwm—2) is a system of piecewise weight functions for
S(Um,M,A) if
i) w >0, Vk=0,...,m—2

Cm—k—mj,k—l

i) wyg is at z;, with m; ; := min (m;, m — k)

e With any system of p.w.f., we can associate piecewise aeneralized derivatives

1
Lov = 2, Lww=—DLi_1v, k=1,...,m—2
wo Wk

Theorem

A generalized spline space S(Um, M, A) containing constants has the ONTP basis
<= there exists a system of p.w.f. and a spline space
V= 8(Lm—2 Um, Mm—2,A) of dimension 2+ . mjm—2, s.t. 1 €V and

SUm, M,A)={sisC™ ™ ' atx; | Lm_ass €V}
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ONTP rasis and weiaht functions

Weight functions

A sequence (wo, ..., Wwm—2) is a system of piecewise weight functions for
S(Um,M,A) if
i) w >0, Vk=0,...,m—2

Cm—k—mj,k—l

i) wyg is at z;, with m; ; := min (m;, m — k)

e With any system of p.w.f., we can associate piecewise aeneralized derivatives

1
Lov = 2, Lww=—DLi_1v, k=1,...,m—2
wo Wk

Theorem

A generalized spline space S(Um, M, A) containing constants has the ONTP basis
<= there exists a system of p.w.f. and a spline space
V= 8(Lm—2 Um, Mm—2,A) of dimension 2+ . mjm—2, s.t. 1 €V and

SUm, M,A)={sisC™ ™ ' atx; | Lm_ass €V}

o wy € S(DLi—1 Um, My—1,A), Mx_1 = {mj,-1}
e The space S(Li U, My, A) has dimension (m — k) + Z]. m;k,



Existence of the optimal
basis

Existence By means of transition functions

e The transition functions allow us to generate a particular sequence of p.w.f. for
SUm,M,A)

wo = 1

W41 = Z-D‘fi’m_k’ k=0,....m—3
ZZ}'&' Dfl,m—k

fi,m—k—l = -

Wk+1
where  fim € SUm, M,A) and  fim-r € S(Lk U, My, A)

. —kem -1
e By construction wy, € C™ TR at g
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Existence By means of transition functions

e The transition functions allow us to generate a particular sequence of p.w.f. for
SUm,M,A)

wo = 1

Wrk+1 = Z-D‘fi’m_k’ k:O,..,,m—S
> . s Dfeom—k

fi,m—k—l . ez TR

Wk+1
where  fim € SUm, M,A) and  fim-r € S(Lk U, My, A)
.

e By construction wy, € C™ ik gt g5

Theorem

The transition functions { fim—x} are positive and monotonically increasing in all the
spaces S(Ly Um, My, A), k=0,...,m —3 <= wr41 >0, Vk=0,...,m—3

Consequence:
e all fi,m—x are positive and monotonically increasing = ONTP
e one of the f; ,,—x is not positive/monotonically increasing — ONFEE.
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SUs,M,A) , U5 = (1,z,2°, cosz,sinz)

.
S(Lolds, M, A)l/

fis

1

S(LaUs, My, A)

g [S(iths, M, A

Example L]

[a,b] = [0,7] , A = {2.5,4.5} , M = {2,1}

|S(DLolds, M, A)|

w1

|S(DL:iUs, My, A)|

1AV N

w2

/‘j (S(DLsUs, M, A)|

w3
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Example (]

SUs, M,A) , U5 = (1,z,2°, cosz,sinz) , [a,b] =1[0,7], A ={2.5,45}, M = {1,1}

- S(Lou;,M,A)’/ J [S(DLolts, M, A)]
- fip L . . e
; |S(L1u;,M1,A)| |S(DL:iUs, My, A)|

L T~ T

fia w2

;
S(Lalds, M, A) (S(DLsUs, M>, A)|

fia /W\ w3



Existence of the optimal
basis

SUs, M, A) U

S(Lou5, M, A)

fis
.
S(LilUs, M1, A)
fia
i
S(LaUs, M2, A)
fi3
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P .
5 = (l,z,2°, cosz,sinz) ,

Example LIl

[a,b] = [0,10], A = {3.5,6.5} , M = {1,1}

|S(DLolds, M, A)|

w1

|S(DL:iUs, M1, A)|

w2

(DLsUs, M>, A)|

VAT
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