Sei in: Home > Progetti di ricerca > Progetti locali

GEOMETRIA COMPLESSA e SPAZI OMOGENEI

COMPLEX GEOMETRY AND LIE GROUPS

Tipologia
Progetti locali
Ente finanziatore
Università di Torino
Periodo
01/01/2014 - 31/12/2015
Coordinatore
Prof. Anna Maria Fino

Aree / Gruppi di ricerca

Partecipanti al progetto

Descrizione del progetto

Altri collaboratori:

Michela Zedda

 

Descrizione del Progetto di Ricerca (scopo, fasi, metodo)

Gli spazi omogenei sono varietà su cui agisce un gruppo transitivo di

trasformazioni e danno luogo ad eccellenti esempi per lo studio dell'interazione tra

l'analisi, la geometria e la topologia. Le tecniche che si intendono adottare sono,

oltre a quelle tipiche della geometria differenziale:

 l’analisi su varietà legata alle equazioni ellittiche e di evoluzione paraboliche

 deformazioni di strutture complesse

 teoria dei gruppi di Lie

Il programma di ricerca dell'Unità è organizzato in 2 sottoprogetti i cui obiettivi

specifici sono riassunti come segue.

(A) Geometrie speciali e analisi su varietà

 Ottenere un’estensione dell’equazione di Calabi-Yau per altre classi di

geometrie speciali.

 Studiare la metrica di Mabuchi in varietà SKT e bilanciate. In entrambi i casi

la metrica è definita nello spazio dei potenziali Kaehleriani e le sue

geodetiche sono in profonda relazione con le proprietà topologiche della

varietà. Per il caso SKT si studierà il J flow per minimizzare la lunghezza

delle geodetiche, mentre per il caso bilanciato verrà utilizzata un flusso di

tipo Calabi precedentemente introdotto da Bedulli e Vezzoni.

 Studiare foliazioni  Kaehleriane e i relativi flussi geometrici.

(B) Geometria di spazi omogenei

 

 Studiare le deformazioni di strutture complesse e l’esistenza di metriche

Hermitiane speciali su spazi omogenei, ottenuti come prodotti di sfere con

gruppi di Lie compatti.

 Analizzare metriche Einstein e Ricci soliton su G_2-varietà, allo scopo di

trovare una classificazione  per classi speciali  di spazi omogenei.

 

Obiettivi del Progetto di Ricerca

Il Coordinatore, Anna Fino, ed i componenti strutturati dell'Unità si impegnano ad

attenersi ai seguenti scopi e responsabilità.

 Organizzare incontri per incoraggiare le collaborazioni tra i membri dell'Unità

ed i seguenti collaboratori esteri: S. Salamon (King’s College, Londra), L.

Ugarte (Saragoza), M. Fernandez (Bilbao), G. Grantcharov (Florida), M. Parton

(Pescara), Y. S. Poon (Riverside), A. Andrada, J. Lauret (Cordoba,

Argentina), S. Rollenske (Bielefeld), L. Bedulli (L’Aquila),W. He (Oregon).

 Permettere ai membri (con particolare attenzione ai più giovani) la

partecipazione a convegni di rilevanza internazionale e missioni di ricerca.

 Appoggiare la costante crescita del gruppo di ricerca seguendo gli studenti di

dottorato, coinvolgendo tutti i membri nella loro preparazione.

 Invitare esperti esterni a Torino a supporto del programma di ricerca e

mantenere aggiornati i membri (con particolare attenzione ai più giovani) delle

nuove linee di ricerca.

 Si intende inoltre organizzare presso il nostro Dipartimento una Scuola di

Geometria Differenziale a febbraio con relatori principali T. Friedrich e I.

Agricola e a metà giugno un convegno “Complex Geometry and Lie groups”

con il prof. Hasegawa (Niigata, Giappone).

Ultimo aggiornamento: 28/07/2015 10:11
Campusnet Unito
Non cliccare qui!